FMA.historical {cfma} | R Documentation |
Functional mediation analysis under historical influence model
Description
This function performs functional mediation regression under the historical influence model with given tuning parameter.
Usage
FMA.historical(Z, M, Y, delta.grid1 = 1, delta.grid2 = 1, delta.grid3 = 1,
intercept = TRUE, basis1 = NULL, Ld2.basis1 = NULL, basis2 = NULL, Ld2.basis2 = NULL,
basis.type = c("fourier"), nbasis1 = 3, nbasis2 = 3,
timeinv = c(0, 1), timegrids = NULL,
lambda1.m = 0.01, lambda2.m = 0.01, lambda1.y = 0.01, lambda2.y = 0.01)
Arguments
Z |
a data matrix. |
M |
a data matrix. |
Y |
a data matrix. |
delta.grid1 |
a number indicates the width of treatment-mediator time interval in the mediator model. |
delta.grid2 |
a number indicates the width of treatment-outcome time interval in the outcome model. |
delta.grid3 |
a number indicates the width of mediator-outcome time interval in the outcome model. |
intercept |
a logic variable. Default is |
basis1 |
a data matrix. Basis function on the |
Ld2.basis1 |
a data matrix. The second derivative of the basis function on the |
basis2 |
a data matrix. Basis function on the |
Ld2.basis2 |
a data matrix. The second derivative of the basis function on the |
basis.type |
a character of basis function type. Default is Fourier basis ( |
nbasis1 |
an integer, the number of basis function on the |
nbasis2 |
an integer, the number of basis function on the |
timeinv |
a numeric vector of length two, the time interval considered in the analysis. Default is (0,1). |
timegrids |
a numeric vector of time grids of measurement. If |
lambda1.m |
a numeric vector of tuning parameter values on the |
lambda2.m |
a numeric vector of tuning parameter values on the |
lambda1.y |
a numeric vector of tuning parameter values on the |
lambda2.y |
a numeric vector of tuning parameter values on the |
Details
The historical influence mediation model is
M(t)=\int_{\Omega_{t}^{1}}Z(s)\alpha(s,t)ds+\epsilon_{1}(t),
Y(t)=\int_{\Omega_{t}^{2}}Z(s)\gamma(s,t)ds+\int_{\Omega_{t}^{3}}M(s)\beta(s,t)ds+\epsilon_{2}(t),
where \alpha(s,t)
, \beta(s,t)
, \gamma(s,t)
are coefficient curves; \Omega_{t}^{j}=[(t-\delta_{j})\vee 0,t]
for j=1,2,3
. The model coefficient curves are estimated by minimizing the penalized L_{2}
-loss.
Value
basis1 |
the basis functions on the |
basis2 |
the basis functions on the |
M |
a list of output for the mediator model
|
Y |
a list of output for the outcome model
|
IE |
a list of output for the indirect effect comparing
|
DE |
a list of output for the direct effect comparing
|
Author(s)
Yi Zhao, Johns Hopkins University, zhaoyi1026@gmail.com;
Xi Luo, Brown University xi.rossi.luo@gmail.com;
Martin Lindquist, Johns Hopkins University, mal2053@gmail.com;
Brian Caffo, Johns Hopkins University, bcaffo@gmail.com
References
Zhao et al. (2017). Functional Mediation Analysis with an Application to Functional Magnetic Resonance Imaging Data. arXiv preprint arXiv:1805.06923.
Examples
##################################################
# Historical influence functional mediation model
data(env.historical)
Z<-get("Z",env.historical)
M<-get("M",env.historical)
Y<-get("Y",env.historical)
# consider Fourier basis
fit<-FMA.historical(Z,M,Y,delta.grid1=3,delta.grid2=3,delta.grid3=3,
intercept=FALSE,timeinv=c(0,300))
# estimate of causal curves
plot(fit$IE$curve,type="l",lwd=5)
plot(fit$DE$curve,type="l",lwd=5)
##################################################