FMA.concurrent.boot {cfma} | R Documentation |
Functional mediation analysis under concurrent regression model with point-wise bootstrap confidence interval
Description
This function performs functional mediation regression under the concurrent model with given tuning parameter. Point-wise confidence bands are obtained from bootstrap.
Usage
FMA.concurrent.boot(Z, M, Y, intercept = TRUE, basis = NULL, Ld2.basis = NULL,
basis.type = c("fourier"), nbasis = 3, timeinv = c(0, 1), timegrids = NULL,
lambda.m = 0.01, lambda.y = 0.01, sims = 1000, boot = TRUE,
boot.ci.type = c("bca", "perc"), conf.level = 0.95, verbose = TRUE)
Arguments
Z |
a data matrix. |
M |
a data matrix. |
Y |
a data matrix. |
intercept |
a logic variable. Default is |
basis |
a data matrix. Basis function used in the functional data analysis. The number of columns is the number of basis function considered. If |
Ld2.basis |
a data matrix. The second derivative of the basis function. The number of columns is the number of basis function considered. If |
basis.type |
a character of basis function type. Default is Fourier basis ( |
nbasis |
an integer, the number of basis function included. If |
timeinv |
a numeric vector of length two, the time interval considered in the analysis. Default is (0,1). |
timegrids |
a numeric vector of time grids of measurement. If |
lambda.m |
a numeric value of the tuning parameter in the mediator model. |
lambda.y |
a numeric value of the tuning parameter in the outcome model. |
sims |
an integer indicating the number of simulations for inference. |
boot |
a logical value, indicating whether or not bootstrap should be used. Default is |
boot.ci.type |
a character of confidence interval method. |
conf.level |
a number of significance level. Default is 0.95. |
verbose |
a logical value, indicating whether print out bootstrap replications. |
Details
The concurrent mediation model is
M(t)=Z(t)\alpha(t)+\epsilon_{1}(t),
Y(t)=Z(t)\gamma(t)+M(t)\beta(t)+\epsilon_{2}(t),
where \alpha(t)
, \beta(t)
, \gamma(t)
are coefficient curves. The model coefficient curves are estimated by minimizing the penalized L_{2}
-loss.
Value
alpha |
a list of output for
|
gamma |
: a list of output for
|
beta |
a list of output for
|
IE |
a list of output for indirect effect estimate
|
DE |
a list of output for direct effect estimate
|
Author(s)
Yi Zhao, Johns Hopkins University, zhaoyi1026@gmail.com;
Xi Luo, Brown University xi.rossi.luo@gmail.com;
Martin Lindquist, Johns Hopkins University, mal2053@gmail.com;
Brian Caffo, Johns Hopkins University, bcaffo@gmail.com
References
Zhao et al. (2017). Functional Mediation Analysis with an Application to Functional Magnetic Resonance Imaging Data. arXiv preprint arXiv:1805.06923.
Examples
##################################################
# Concurrent functional mediation model
data(env.concurrent)
Z<-get("Z",env.concurrent)
M<-get("M",env.concurrent)
Y<-get("Y",env.concurrent)
# consider Fourier basis
fit.boot<-FMA.concurrent.boot(Z,M,Y,intercept=FALSE,timeinv=c(0,300))
##################################################