FMA.concurrent.CV {cfma} | R Documentation |
Functional mediation analysis under concurrent regression model
Description
This function performs functional mediation regression under the concurrent model. Tuning parameter is chosen based on cross-validation.
Usage
FMA.concurrent.CV(Z, M, Y, intercept = TRUE, basis = NULL, Ld2.basis = NULL,
basis.type = c("fourier"), nbasis = 3, timeinv = c(0, 1), timegrids = NULL,
lambda = NULL, nfolds = 5)
Arguments
Z |
a data matrix. |
M |
a data matrix. |
Y |
a data matrix. |
intercept |
a logic variable. Default is |
basis |
a data matrix. Basis function used in the functional data analysis. The number of columns is the number of basis function considered. If |
Ld2.basis |
a data matrix. The second derivative of the basis function. The number of columns is the number of basis function considered. If |
basis.type |
a character of basis function type. Default is Fourier basis ( |
nbasis |
an integer, the number of basis function included. If |
timeinv |
a numeric vector of length two, the time interval considered in the analysis. Default is (0,1). |
timegrids |
a numeric vector of time grids of measurement. If |
lambda |
a numeric vector of tuning parameter values. |
nfolds |
a number gives the number of folds in cross-validation. |
Details
The concurrent mediation model is
M(t)=Z(t)\alpha(t)+\epsilon_{1}(t),
Y(t)=Z(t)\gamma(t)+M(t)\beta(t)+\epsilon_{2}(t),
where \alpha(t)
, \beta(t)
, \gamma(t)
are coefficient curves. The model coefficient curves are estimated by minimizing the penalized L_{2}
-loss. Tuning parameter \lambda
controls the smoothness of the estimated curves, and is chosen by cross-validation.
Value
basis |
the basis functions used in the analysis. |
M |
a list of output for the mediator model
|
Y |
a list of output for the outcome model
|
IE |
a list of output for the indirect effect comparing
|
DE |
a list of output for the direct effect comparing
|
Author(s)
Yi Zhao, Johns Hopkins University, zhaoyi1026@gmail.com;
Xi Luo, Brown University xi.rossi.luo@gmail.com;
Martin Lindquist, Johns Hopkins University, mal2053@gmail.com;
Brian Caffo, Johns Hopkins University, bcaffo@gmail.com
References
Zhao et al. (2017). Functional Mediation Analysis with an Application to Functional Magnetic Resonance Imaging Data. arXiv preprint arXiv:1805.06923.
Examples
##################################################
# Concurrent functional mediation model
data(env.concurrent)
Z<-get("Z",env.concurrent)
M<-get("M",env.concurrent)
Y<-get("Y",env.concurrent)
# consider Fourier basis
fit<-FMA.concurrent.CV(Z,M,Y,intercept=FALSE,timeinv=c(0,300))
# estimate of alpha
plot(fit$M$curve[1,],type="l",lwd=5)
lines(get("alpha",env.concurrent),lty=2,lwd=2,col=2)
# estimate of gamma
plot(fit$Y$curve[1,],type="l",lwd=5)
lines(get("gamma",env.concurrent),lty=2,lwd=2,col=2)
# estimate of beta
plot(fit$Y$curve[2,],type="l",lwd=5)
lines(get("beta",env.concurrent),lty=2,lwd=2,col=2)
# estimate of causal curves
plot(fit$IE$curve,type="l",lwd=5)
plot(fit$DE$curve,type="l",lwd=5)
##################################################