| FMA.concurrent.CV {cfma} | R Documentation | 
Functional mediation analysis under concurrent regression model
Description
This function performs functional mediation regression under the concurrent model. Tuning parameter is chosen based on cross-validation.
Usage
FMA.concurrent.CV(Z, M, Y, intercept = TRUE, basis = NULL, Ld2.basis = NULL, 
    basis.type = c("fourier"), nbasis = 3, timeinv = c(0, 1), timegrids = NULL, 
    lambda = NULL, nfolds = 5)
Arguments
Z | 
  a data matrix.   | 
M | 
  a data matrix.   | 
Y | 
  a data matrix.   | 
intercept | 
  a logic variable. Default is   | 
basis | 
  a data matrix. Basis function used in the functional data analysis. The number of columns is the number of basis function considered. If   | 
Ld2.basis | 
  a data matrix. The second derivative of the basis function. The number of columns is the number of basis function considered. If   | 
basis.type | 
  a character of basis function type. Default is Fourier basis (  | 
nbasis | 
  an integer, the number of basis function included. If   | 
timeinv | 
 a numeric vector of length two, the time interval considered in the analysis. Default is (0,1).  | 
timegrids | 
  a numeric vector of time grids of measurement. If   | 
lambda | 
 a numeric vector of tuning parameter values.  | 
nfolds | 
 a number gives the number of folds in cross-validation.  | 
Details
The concurrent mediation model is
M(t)=Z(t)\alpha(t)+\epsilon_{1}(t),
Y(t)=Z(t)\gamma(t)+M(t)\beta(t)+\epsilon_{2}(t),
where \alpha(t), \beta(t), \gamma(t) are coefficient curves. The model coefficient curves are estimated by minimizing the penalized L_{2}-loss. Tuning parameter \lambda controls the smoothness of the estimated curves, and is chosen by cross-validation.
Value
basis | 
 the basis functions used in the analysis.  | 
M | 
 a list of output for the mediator model 
 
 
 
  | 
Y | 
 a list of output for the outcome model 
 
 
 
  | 
IE | 
 a list of output for the indirect effect comparing  
 
  | 
DE | 
 a list of output for the direct effect comparing  
 
  | 
Author(s)
Yi Zhao, Johns Hopkins University, zhaoyi1026@gmail.com;
Xi Luo, Brown University xi.rossi.luo@gmail.com;
Martin Lindquist, Johns Hopkins University, mal2053@gmail.com;
Brian Caffo, Johns Hopkins University, bcaffo@gmail.com
References
Zhao et al. (2017). Functional Mediation Analysis with an Application to Functional Magnetic Resonance Imaging Data. arXiv preprint arXiv:1805.06923.
Examples
##################################################
# Concurrent functional mediation model
data(env.concurrent)
Z<-get("Z",env.concurrent)
M<-get("M",env.concurrent)
Y<-get("Y",env.concurrent)
# consider Fourier basis
fit<-FMA.concurrent.CV(Z,M,Y,intercept=FALSE,timeinv=c(0,300))
# estimate of alpha
plot(fit$M$curve[1,],type="l",lwd=5)
lines(get("alpha",env.concurrent),lty=2,lwd=2,col=2)
# estimate of gamma
plot(fit$Y$curve[1,],type="l",lwd=5)
lines(get("gamma",env.concurrent),lty=2,lwd=2,col=2)
# estimate of beta
plot(fit$Y$curve[2,],type="l",lwd=5)
lines(get("beta",env.concurrent),lty=2,lwd=2,col=2)
# estimate of causal curves
plot(fit$IE$curve,type="l",lwd=5)
plot(fit$DE$curve,type="l",lwd=5)
##################################################