CV {cenROC} | R Documentation |
The cross-validation bandwidth selection for weighted data
Description
This function computes the data-driven bandwidth for smoothing the ROC (or distribution) function using the CV method of Beyene and El Ghouch (2020). This is an extension of the classical (unweighted) cross-validation bandwith selection method to the case of weighted data.
Usage
CV(X, wt, ktype = "normal")
Arguments
X |
The numeric data vector. |
wt |
The non-negative weight vector. |
ktype |
A character string giving the type kernel to be used: " |
Details
Bowman et al (1998) proposed the cross-validation bandwidth selection method for unweighted kernal smoothed distribution function. This method is implemented in the R
package kerdiest
.
We adapted this for the case of weighted data by incorporating the weight variable into the cross-validation function of Bowman's method. See Beyene and El Ghouch (2020) for details.
Value
Returns the computed value for the bandwith parameter.
Author(s)
Kassu Mehari Beyene and Anouar El Ghouch
References
Beyene, K. M. and El Ghouch A. (2020). Smoothed time-dependent receiver operating characteristic curve for right censored survival data. Statistics in Medicine. 39: 3373– 3396.
Bowman A., Hall P. and Trvan T.(1998). Bandwidth selection for the smoothing of distribution functions. Biometrika 85:799-808.
Quintela-del-Rio, A. and Estevez-Perez, G. (2015). kerdiest:
Nonparametric kernel estimation of the distribution function, bandwidth selection and estimation of related functions. R
package version 1.2.
Examples
library(cenROC)
X <- rnorm(100) # random data vector
wt <- runif(100) # weight vector
## Cross-validation bandwidth selection
CV(X = X, wt = wt)$bw