get_energetics {ceas} | R Documentation |
Calculate ATP Production from OXPHOS and Glycolysis
Description
Calculates ATP production from glycolysis and OXPHOS at points defined in patitioned_data
Usage
get_energetics(partitioned_data, ph, pka, buffer)
Arguments
partitioned_data |
a data.table of organized Seahorse OCR and ECAR
rates based on timepoints from the assay cycle. Returned by |
ph |
pH value for energetics calculation (for XF Media, 7.5) |
pka |
pKa value for energetics calculation (for XF Media, 6.063) |
buffer |
buffer for energetics calculation (for XF Media, 0.1 mpH/pmol H+) |
Details
TODO: check that all symbols are defined
Proton production rate (PPR):
\text{PPR} = \frac{\text{ECAR value}}{\text{buffer}}
\text{PPR}_{\text{mito}} = \frac{10^{\text{pH}-\text{pK}_a}}{1+10^{\text{pH}-\text{pK}_a}} \cdot \frac{\text{H}^+}{\text{O}_2} \cdot \text{OCR}
calculates the proton production from glucose during its conversion to bicarbonate and \text{H}^+
assuming max \frac{\text{H}^+}{\text{O}_2}
of 1
\text{PPR}_\text{glyc} = \text{PPR} - \text{PPR}_\text{resp}
calculates the proton production from glucose during its conversion to lactate + \text{H}^+
Joules of ATP (JATP) production:
\text{ATP}_{\text{glyc}} =
\Bigl(\text{PPR}_\text{glyc} \cdot \frac{\text{ATP}}{\text{lactate}}\Bigl) +
\Bigl(\text{MITO}_\text{resp} \cdot 2 \cdot \frac{\text{P}}{\text{O}_\text{glyc}}\Bigl)
\frac{\text{ATP}}{\text{lactate}} = 1
with
\frac{\text{P}}{{\text{O}_\text{glyc}}}
= 0.167 for glucose (0.242 for glycogen).
\text{ATP}_\text{resp} =
\Bigl(\text{coupled MITO}_\text{resp} \cdot 2 \cdot \frac{\text{P}}{\text{O}_\text{oxphos}}\Bigl) +
\Bigl(\text{MITO}_\text{resp} \cdot 2 \cdot \frac{\text{P}}{\text{O}_\text{TCA}}\Bigl)
with \frac{\text{P}}{{\text{O}_\text{oxphos}}}
= 2.486 and \frac{\text{P}}{{\text{O}_\text{TCA}}}
= 0.167.
Value
a data.table
of glycolysis and OXPHOS rates
Examples
rep_list <- system.file("extdata", package = "ceas") |>
list.files(pattern = "*.xlsx", full.names = TRUE)
seahorse_rates <- read_data(rep_list, sheet = 2)
partitioned_data <- partition_data(seahorse_rates)
energetics <- get_energetics(partitioned_data, ph = 7.4, pka = 6.093, buffer = 0.1)
head(energetics, n = 10)