genQ {cdmTools} | R Documentation |
Generate Q-matrix
Description
Generates a Q-matrix. The criteria from Chen, Liu, Xu, & Ying (2015) and Xu & Shang (2018) can be used to generate identifiable Q-matrices. Only binary Q-matrix are supported so far. Useful for simulation studies.
Usage
genQ(J, K, Kj, I = 2, min.JK = 3, max.Kcor = 1, Qid = "none", seed = NULL)
Arguments
J |
Number of items. |
K |
Number of attributes. |
Kj |
A vector specifying the number (or proportion, if summing up to 1) of items measuring 1, 2, 3, ..., attributes. The first element of the vector determines the number (or proportion) of items measuring 1 attribute, and so on. See |
I |
Number of identity matrices to include in the Q-matrix (up to column permutation). The default is 2. |
min.JK |
Minimum number of items measuring each attribute. It can be overwritten by |
max.Kcor |
Maximum allowed tetrachoric correlation among the columns to avoid overlapping (Nájera, Sorrel, de la Torre, & Abad, 2020). The default is 1. |
Qid |
Assure that the generated Q-matrix is generically identifiable. It includes |
seed |
A seed for obtaining consistent results. If |
Value
genQ
returns an object of class genQ
.
gen.Q
The generated Q-matrix (
matrix
).JK
Number of items measuring each attribute (
vector
).Kcor
Tetrachoric correlations among the columns (
matrix
).is.Qid
Q-matrix identifiability information (
list
).specifications
Function call specifications (
list
).
Author(s)
Pablo Nájera, Universidad Pontificia Comillas
References
Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110, 850-866. https://doi.org/10.1080/01621459.2014.934827
Nájera, P., Sorrel, M. A., de la Torre, J., & Abad, F. J. (2020). Balancing fit and parsimony to improve Q-matrix validation. British Journal of Mathematical and Statistical Psychology. https://doi.org/10.1111/bmsp.12228
Xu, G., & Shang, Z. (2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, 113, 1284-1295. https://doi.org/10.1080/01621459.2017.1340889
Examples
Kj <- c(15, 10, 0, 5) # 15 one-att, 10 2-atts, 0 3-atts, and 5 four-atts items
Q <- genQ(J = 30, K = 4, Kj = Kj, Qid = "others", seed = 123)