GNPC {cdmTools} | R Documentation |
General nonparametric classification method
Description
Attribute profile estimation using the general nonparametric classification method (GNPC; Chiu, Sun, & Bian, 2018).
The GNPC can be considered as a robust alternative to the parametric G-DINA model with low sample sizes.
The AlphaNP
function from the NPCD
package (Zheng & Chiu, 2019; Chiu, Sun, & Bian, 2018) using weighted Hamming distances is used to initiate the procedure.
Usage
GNPC(
dat,
Q,
initiate = "AND",
min.change = 0.001,
maxitr = 1000,
verbose = TRUE
)
Arguments
dat |
A N individuals x J items ( |
Q |
A J items x K attributes Q-matrix ( |
initiate |
Should the conjunctive ( |
min.change |
Minimum proportion of modified attribute profiles to use as a stopping criterion. Default is .001. |
maxitr |
Maximum number of iterations. Default is 1000. |
verbose |
Print information after each iteration. Default is |
Value
GNPC
returns an object of class GNPC
.
alpha.est
Estimated attribute profiles (
matrix
).loss.matrix
The distances between the weighted ideal responses from each latent class (rows) and examinees' observed responses (columns) (
matrix
).eta.w
The weighted ideal responses for each latent class (rows) on each item (columns) (
matrix
).w
The estimated weights, used to compute the weighted ideal responses (
matrix
).n.ite
Number of iterations required to achieve convergence (
double
).hist.change
Proportion of modified attribute profiles in each iteration (
vector
).specifications
Function call specifications (
list
).
Author(s)
Pablo Nájera, Universidad Pontificia Comillas
References
Chiu, C.-Y., & Douglas, J. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns. Journal of Classification, 30, 225-250. DOI: 10.1007/s00357-013-9132-9
Chiu, C.-Y., Sun, Y., & Bian, Y. (2018). Cognitive diagnosis for small education programs: The general nonparametric classification method. Psychometrika, 83, 355-375. DOI: 10.1007/s11336-017-9595-4
Zheng, Y., & Chiu, C.-Y. (2019). NPCD: Nonparametric methods for cognitive diagnosis. R package version 1.0-11. https://cran.r-project.org/web/packages/NPCD/.
Examples
library(GDINA)
Q <- sim30GDINA$simQ # Q-matrix
K <- ncol(Q)
J <- nrow(Q)
set.seed(123)
GS <- data.frame(guessing = rep(0.1, J), slip = rep(0.1, J))
sim <- simGDINA(200, Q, GS)
simdat <- sim$dat # Simulated data
simatt <- sim$attribute # Generating attributes
fit.GNPC <- GNPC(simdat, Q) # Apply the GNPC method
ClassRate(fit.GNPC$alpha.est, simatt) # Check classification accuracy