CA.MI {cdmTools} | R Documentation |
Calculate corrected classification accuracy with multiple imputation
Description
This function calculates the test-, pattern-, and attribute-level classification accuracy indices based on integrated posterior probabilities from multiple imputed item parameters (Kreitchmann et al., 2022).
The classification accuracy indices are the ones developed by Iaconangelo (2017) and Wang et al. (2015).
It is only applicable to dichotomous attributes. The function is built upon the CA
function from the GDINA
package (Ma & de la Torre, 2020).
Usage
CA.MI(fit, what = "EAP", R = 500, n.cores = 1, verbose = TRUE, seed = NULL)
Arguments
fit |
An object of class |
what |
What attribute estimates are used? The default is |
R |
Number of bootstrap samples and imputations. The default is 500. |
n.cores |
Number of processors to use to speed up multiple imputation. The default is 2. |
verbose |
Show progress. The default is |
seed |
A seed for obtaining consistent results. If |
Value
CA.MI
returns an object of class CA
, with a list of elements:
tau
Estimated test-level classification accuracy, see Iaconangelo (2017, Eq 2.2) (
vector
).tau_l
Estimated pattern-level classification accuracy, see Iaconangelo (2017, p. 13) (
vector
).tau_k
Estimated attribute-level classification accuracy, see Wang, et al (2015, p. 461 Eq 6) (
vector
).CCM
Conditional classification matrix, see Iaconangelo (2017, p. 13) (
matrix
).
Author(s)
Rodrigo S. Kreitchmann, Universidad Nacional de Educación a Distancia
References
Iaconangelo, C.(2017). Uses of classification error probabilities in the three-step approach to estimating cognitive diagnosis models. (Unpublished doctoral dissertation). New Brunswick, NJ: Rutgers University.
Kreitchmann, R. S., de la Torre, J., Sorrel, M. A., Nájera, P., & Abad, F. J. (2022). Improving reliability estimation in cognitive diagnosis modeling. Behavior Research Methods. https://doi.org/10.3758/s13428-022-01967-5
Ma, W., & de la Torre, J. (2020). GDINA: An R package for cognitive diagnosis modeling. Journal of Statistical Software, 93(14). https://doi.org/10.18637/jss.v093.i14
Wang, W., Song, L., Chen, P., Meng, Y., & Ding, S. (2015). Attribute-level and pattern-level classification consistency and accuracy indices for cognitive diagnostic assessment. Journal of Educational Measurement, 52 , 457-476.
Examples
library(GDINA)
dat <- sim10GDINA$simdat[1:100,]
Q <- sim10GDINA$simQ
fit <- GDINA(dat = dat, Q = Q, model = "GDINA")
ca.mi <- CA.MI(fit)
ca.mi