LR.2step {cdcatR}R Documentation

Item-level model comparison using 2LR test

Description

This function evaluates whether the saturated G-DINA model can be replaced by reduced CDMs without significant loss in model data fit for each item using two-step likelihood ratio test (2LR). Sorrel, de la Torre, Abad, and Olea (2017) and Ma & de la Torre (2018) can be consulted for details.

Usage

LR.2step(fit, p.adjust.method = "holm", alpha.level = 0.05)

Arguments

fit

Calibrated item bank with the GDINA::GDINA (Ma & de la Torre, 2020) or CDM::gdina (Robitzsch et al., 2020) R packages functions

p.adjust.method

Scalar character. Correction method for p-values. Possible values include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", and "none". See p.adjust function from the stats R package for additional details. Default is holm

alpha.level

Scalar numeric. Alpha level for decision. Default is 0.05

Value

LR2.step returns an object of class LR2.step

LR2

Numeric matrix. LR2 statistics

pvalues

Numeric matrix. p-values associated with the 2LR statistics

adj.pvalues

Numeric matrix. Adjusted p-values associated with the 2LR statistics

df

Numeric matrix. Degrees of freedom

models.adj.pvalues

Character vector denoting the model selected for each item using the largestp rule (Ma et al., 2016). All statistics whose p-values are less than alpha.level are rejected. All statistics with p-value larger than alpha.level define the set of candidate reduced models. The G-DINA model is retained if all statistics are rejected. Whenever the set includes more than one model, the model with the largest p-value is selected as the best model for that item

References

Ma, W. & de la Torre, J. (2018). Category-level model selection for the sequential G-DINA model. Journal of Educational and Behavorial Statistic, 44, 45-77.

Ma, W. & de la Torre, J. (2020). GDINA: The generalized DINA model framework. R package version 2.7.9. Retrived from https://CRAN.R-project.org/package=GDINA

Ma, W., Iaconangelo, C., & de la Torre, J. (2016). Model similarity, model selection and attribute classification. Applied Psychological Measurement, 40, 200-217.

Robitzsch, A., Kiefer, T., George, A. C., & Uenlue, A. (2020). CDM: Cognitive Diagnosis Modeling. R package version 7.5-15. https://CRAN.R-project.org/package=CDM

Sorrel, M. A., de la Torre, J., Abad, F. J., & Olea, J. (2017). Two-step likelihood ratio test for item-level model comparison in cognitive diagnosis models. Methodology, 13, 39-47.

Examples

Q <- sim180DINA$simQ
dat <- sim180DINA$simdat
resGDINA <- GDINA::GDINA(dat = dat, Q = Q, model = "GDINA",verbose = FALSE)
#resCDM <- CDM::gdina(data = dat, q.matrix = Q, rule = "GDINA", progress = FALSE)
LR2.GDINA <- LR.2step(fit = resGDINA) # GDINA package
#LR2.CDM <- LR.2step(fit = resCDM) # CDM package
mean(LR2.GDINA$models.adj.pvalues[which(rowSums(Q) != 1)] ==
      sim180DINA$specifications$item.bank$specifications$model[which(rowSums(Q) != 1)])
#mean(LR2.CDM$models.adj.pvalues[which(rowSums(Q) != 1)] ==
#     sim180DINA$specifications$item.bank$specifications$model[which(rowSums(Q) != 1)])


[Package cdcatR version 1.0.2 Index]