blocks_to_rowrecs {cdata} | R Documentation |
Map data records from block records to row records.
Description
Map data records from block records (which each record may be more than one row) to row records (where each record is a single row).
Usage
blocks_to_rowrecs(
tallTable,
keyColumns,
controlTable,
...,
columnsToCopy = NULL,
checkNames = TRUE,
checkKeys = TRUE,
strict = FALSE,
controlTableKeys = colnames(controlTable)[[1]],
tmp_name_source = wrapr::mk_tmp_name_source("bltrr"),
temporary = TRUE,
allow_rqdatatable = FALSE
)
## Default S3 method:
blocks_to_rowrecs(
tallTable,
keyColumns,
controlTable,
...,
columnsToCopy = NULL,
checkNames = TRUE,
checkKeys = FALSE,
strict = FALSE,
controlTableKeys = colnames(controlTable)[[1]],
tmp_name_source = wrapr::mk_tmp_name_source("btrd"),
temporary = TRUE,
allow_rqdatatable = FALSE
)
## S3 method for class 'relop'
blocks_to_rowrecs(
tallTable,
keyColumns,
controlTable,
...,
columnsToCopy = NULL,
checkNames = TRUE,
checkKeys = FALSE,
strict = FALSE,
controlTableKeys = colnames(controlTable)[[1]],
tmp_name_source = wrapr::mk_tmp_name_source("bltrr"),
temporary = TRUE,
allow_rqdatatable = FALSE
)
Arguments
tallTable |
data.frame containing data to be mapped (in-memory data.frame). |
keyColumns |
character vector of column defining row groups |
controlTable |
table specifying mapping (local data frame) |
... |
force later arguments to be by name. |
columnsToCopy |
character, extra columns to copy. |
checkNames |
logical, if TRUE check names. |
checkKeys |
logical, if TRUE check keyColumns uniquely identify blocks (required). |
strict |
logical, if TRUE check control table name forms |
controlTableKeys |
character, which column names of the control table are considered to be keys. |
tmp_name_source |
a tempNameGenerator from cdata::mk_tmp_name_source() |
temporary |
logical, if TRUE use temporary tables |
allow_rqdatatable |
logical, if TRUE allow rqdatatable shortcutting on simple conversions. |
Details
The controlTable defines the names of each data element in the two notations: the notation of the tall table (which is row oriented) and the notation of the wide table (which is column oriented). controlTable[ , 1] (the group label) cross colnames(controlTable) (the column labels) are names of data cells in the long form. controlTable[ , 2:ncol(controlTable)] (column labels) are names of data cells in the wide form. To get behavior similar to tidyr::gather/spread one builds the control table by running an appropriate query over the data.
Some discussion and examples can be found here: https://winvector.github.io/FluidData/FluidData.html and here https://github.com/WinVector/cdata.
Value
wide table built by mapping key-grouped tallTable rows to one row per group
See Also
build_pivot_control
, rowrecs_to_blocks
Examples
# pivot example
d <- data.frame(meas = c('AUC', 'R2'),
val = c(0.6, 0.2))
cT <- build_pivot_control(d,
columnToTakeKeysFrom= 'meas',
columnToTakeValuesFrom= 'val')
blocks_to_rowrecs(d,
keyColumns = NULL,
controlTable = cT)
d <- data.frame(meas = c('AUC', 'R2'),
val = c(0.6, 0.2))
cT <- build_pivot_control(
d,
columnToTakeKeysFrom= 'meas',
columnToTakeValuesFrom= 'val')
ops <- rquery::local_td(d) %.>%
blocks_to_rowrecs(.,
keyColumns = NULL,
controlTable = cT)
cat(format(ops))
if(requireNamespace("rqdatatable", quietly = TRUE)) {
library("rqdatatable")
d %.>%
ops %.>%
print(.)
}
if(requireNamespace("RSQLite", quietly = TRUE)) {
db <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
DBI::dbWriteTable(db,
'd',
d,
overwrite = TRUE,
temporary = TRUE)
db %.>%
ops %.>%
print(.)
DBI::dbDisconnect(db)
}