dusb {cctools} | R Documentation |
Uniform scaled beta distribution
Description
The uniform scaled beta (USB) distribution describes the distribution of the random variable
U_{b, \nu} = U + \theta(B - 0.5),
where U
is a U[-0.5, 0.5]
random variable, B
is a
Beta(\nu, \nu)
random variable, and theta > 0, \nu >= 1
.
Usage
dusb(x, theta = 0, nu = 5)
rusb(n, theta = 0, nu = 5, quasi = FALSE)
Arguments
x |
vector of quantiles. |
theta |
scale parameter of the USB distribution. |
nu |
smoothness parameter of the USB distribution. |
n |
number of observations. |
quasi |
logical indicating whether quasi random numbers
( |
References
Nagler, T. (2017). A generic approach to nonparametric function estimation with mixed data. arXiv:1704.07457
Examples
# plot distribution
sq <- seq(-0.8, 0.8, by = 0.01)
plot(sq, dusb(sq), type = "l")
lines(sq, dusb(sq, theta = 0.25), col = 2)
lines(sq, dusb(sq, theta = 0.25, nu = 10), col = 3)
# simulate from the distribution
x <- rusb(100, theta = 0.3, nu = 0)
[Package cctools version 0.1.2 Index]