ccmm.sa {ccmm} | R Documentation |
Sensitivity analysis
Description
Estimated total indirect effects (TIDE) given correlation coefficients (rho)
Usage
ccmm.sa(y, M, tr, x = NULL, w = NULL, stp = 0.01)
Arguments
y |
Vector of continuous outcomes |
M |
Matrix of compositional data |
tr |
Vector of continuous or binary treatments |
x |
Matrix of covariates |
w |
Vector of weights on samples |
stp |
Increment of the correlation coefficient |
Value
Matrix of rho and TIDE
Author(s)
Michael B. Sohn
Maintainer: Michael B. Sohn <msohn@mail.med.upenn.edu>
References
Sohn, M.B. and Li, H. (2017). Compositional Mediation Analysis for Microbiome Studies (AOAS: In revision)
Examples
# Load test data
data(ccmm_test_data);
outcome <- ccmm_test_data[,1];
treatment <- ccmm_test_data[,2];
mediators <- as.matrix(ccmm_test_data[,3:22]);
covariates <- as.matrix(ccmm_test_data[,23:24]);
rslt.sa <- ccmm.sa(outcome, mediators, treatment, covariates);
[Package ccmm version 1.0 Index]