predict.cclust {cclust} | R Documentation |
Assign clusters to new data
Description
Assigns each data point (row in newdata
) the cluster corresponding to
the closest center found in object
.
Usage
## S3 method for class 'cclust'
predict(object, newdata, ...)
Arguments
object |
Object of class |
newdata |
Data matrix where columns correspond to variables and rows to observations |
... |
currently not used |
Value
predict.cclust
returns an object of class "cclust"
.
Only size
is changed as compared to the argument
object
.
cluster |
Vector containing the indices of the clusters where the data is mapped. |
size |
The number of data points in each cluster. |
Author(s)
Evgenia Dimitriadou
See Also
Examples
# a 2-dimensional example
x<-rbind(matrix(rnorm(100,sd=0.3),ncol=2),
matrix(rnorm(100,mean=1,sd=0.3),ncol=2))
cl<-cclust(x,2,20,verbose=TRUE,method="kmeans")
plot(x, col=cl$cluster)
# a 3-dimensional example
x<-rbind(matrix(rnorm(150,sd=0.3),ncol=3),
matrix(rnorm(150,mean=1,sd=0.3),ncol=3),
matrix(rnorm(150,mean=2,sd=0.3),ncol=3))
cl<-cclust(x,6,20,verbose=TRUE,method="kmeans")
plot(x, col=cl$cluster)
# assign classes to some new data
y<-rbind(matrix(rnorm(33,sd=0.3),ncol=3),
matrix(rnorm(33,mean=1,sd=0.3),ncol=3),
matrix(rnorm(3,mean=2,sd=0.3),ncol=3))
ycl<-predict(cl, y)
plot(y, col=ycl$cluster)
[Package cclust version 0.6-26 Index]