MultiCX {ccTensor} R Documentation

MultiCX Tensor Decomposition

Description

The input data is assumed to be a tensor. MultiCX decomposes the tensor into a core tensor and some factor matrices. The factor matrices are not estimated values but the actual column vectors sampled from the unfolded matrix in each mode.

Usage

MultiCX(Y, rank=NULL, modes=1:3, thr=0.9,
c.method=c("best.match", "random", "exact.num.random", "top.scores"))

Arguments

 Y The input tensor (e.g. N times M times L). rank The number of low-dimension of factor matrices (e.g. J1, J2, and J3). If this argument is not specified or specified as NULL, the low-dimension is estimated based on the cumulative singular value (Default: NULL). modes The vector of the modes on whih to perform the decomposition (Default: 1:3 ). thr The threshold to determine the low-dimension of factor matrices. The value must be range 0 to 1 (Default: 0.9). c.method The column sampling algorithm (Default: best.match).

Value

U: Core tensor (e.g. J1 times J2 times J3). C: Factor matrices (e.g. C_1: ????????) RecError : The reconstruction error between data tensor and reconstructed tensor from C and X.

Koki Tsuyuzaki

References

Maria F. K. B. et. al. (2019). Multidimensional CX Decomposition of Tensors. WCNPS

Examples

library("ccTensor")
library("nnTensor")
# Test data
tensdata <- toyModel(model = "CP")
# Simple usage
out <- MultiCX(tensdata, rank=c(3,4,5))

[Package ccTensor version 1.0.2 Index]