dag_numpyro {causact} | R Documentation |
Generate a representative sample of the posterior distribution
Description
Generate a representative sample of the posterior distribution. The input graph object should be of class causact_graph
and created using dag_create()
. The specification of a completely consistent joint distribution is left to the user.
Usage
dag_numpyro(
graph,
mcmc = TRUE,
num_warmup = 1000,
num_samples = 4000,
seed = 1234567
)
Arguments
graph |
a graph object of class |
mcmc |
a logical value indicating whether to sample from the posterior distribution. When |
num_warmup |
an integer value for the number of initial steps that will be discarded while the markov chain finds its way into the typical set. |
num_samples |
an integer value for the number of samples. |
seed |
an integer-valued random seed that serves as a starting point for a random number generator. By setting the seed to a specific value, you can ensure the reproducibility and consistency of your results. |
Value
If mcmc=TRUE
, returns a dataframe of posterior distribution samples corresponding to the input causact_graph
. Each column is a parameter and each row a draw from the posterior sample output. If mcmc=FALSE
, running dag_numpyro
returns a character string of code that would help the user generate the posterior distribution; useful for debugging.
Examples
graph = dag_create() %>%
dag_node("Get Card","y",
rhs = bernoulli(theta),
data = carModelDF$getCard) %>%
dag_node(descr = "Card Probability by Car",label = "theta",
rhs = beta(2,2),
child = "y") %>%
dag_node("Car Model","x",
data = carModelDF$carModel,
child = "y") %>%
dag_plate("Car Model","x",
data = carModelDF$carModel,
nodeLabels = "theta")
graph %>% dag_render()
numpyroCode = graph %>% dag_numpyro(mcmc=FALSE)
## Not run:
## default functionality returns a data frame
# below requires numpyro installation
drawsDF = graph %>% dag_numpyro()
drawsDF %>% dagp_plot()
## End(Not run)