plot.listofindex {cati} | R Documentation |
Plot community assembly index
Description
Plot community assembly index and confidence intervals using a list of index. S3 method for class listofindex.
Usage
## S3 method for class 'listofindex'
plot(x, type = "normal",
col.index = c("red", "purple", "olivedrab3"), add.conf = TRUE,
color.cond = TRUE, val.quant = c(0.025, 0.975),
grid.v = TRUE, grid.h = TRUE, xlim = NULL, ylim = NULL,
cex.text = 0.8, plot.ask = FALSE, srt.text = 90, alpha = 0.4, ...)
Arguments
x |
A list of index and related null models obtained from to the as.listofindex function. |
type |
Type of plot. Possible type = "simple", "simple_range", "normal", "barplot" and "bytraits". |
col.index |
Vector of colors for index. |
add.conf |
Logical value; Add confidence intervals or not. |
color.cond |
Logical value; If color.cond = TRUE, color points indicate T-statistics values significatively different from the null model and grey points are not different from null model. |
val.quant |
Numeric vectors of length 2, giving the quantile to calculate confidence interval. By default val.quant = c(0.025,0.975) for a bilateral test with alpha = 5%. |
grid.v |
Logical value; print vertical grid or not |
grid.h |
Logical value; print horizontal grid or not |
xlim |
Numeric vectors of length 2, giving the x coordinates range |
ylim |
Numeric vectors of length 2, giving the y coordinates range |
cex.text |
Numeric value; the magnification to be used for text relative to the current setting of cex |
plot.ask |
Logical value; ask for plotting the next plot or not. |
srt.text |
Degree of rotation for text. |
alpha |
Degree of transparency for null models aera. |
... |
Any additional arguments are passed to the plot function creating the core of the plot and can be used to adjust the look of resulting graph. |
Details
S3 method plot for class listofindex: -Normal type plot means, standard deviations, ranges and confidence intervals of T-statistics. -Simple_range type plot means, standard deviations and range of T-statistics -Simple type plot T-statistics for each site and traits and the mean confidence intervals by traits -Barplot type plot means, standard deviations and confidence intervals of T-statistics in a barplot fashion -Bysites type plot each metrics for each sites -Bytraits type plot each metrics for each traits
Value
None; used for the side-effect of producing a plot.
Author(s)
Adrien Taudiere
See Also
as.listofindex
;
plot.Tstats
;
ses.listofindex
Examples
data(finch.ind)
res.finch <- Tstats(traits.finch, ind.plot = ind.plot.finch,
sp = sp.finch, nperm = 9, print = FALSE)
## Not run:
#### Use a different regional pool than the binding of studied communities
#create a random regional pool for the example
reg.p <- rbind(traits.finch, traits.finch[sample(1:2000,300), ])
res.finch2 <- Tstats(traits.finch, ind.plot = ind.plot.finch,
sp = sp.finch, reg.pool=reg.p, nperm = 9, print = FALSE)
plot(as.listofindex(list(res.finch,res.finch2)))
#### Use a different regional pool for each communities
#create a random regional pool for each communities for the example
list.reg.p <- list(
traits.finch[sample(1:290,200), ], traits.finch[sample(100:1200,300), ],
traits.finch[sample(100:1500, 1000), ], traits.finch[sample(300:800,300), ],
traits.finch[sample(1000:2000, 500), ], traits.finch[sample(100:900, 700), ] )
# Warning: the regional pool need to be larger than the observed communities
table(ind.plot.finch)
# For exemple, the third community need a regional pool of more than 981 individuals
res.finch3 <- Tstats(traits.finch, ind.plot = ind.plot.finch,
sp = sp.finch, reg.pool=list.reg.p, nperm = 9, print = FALSE)
plot(as.listofindex(list(res.finch, res.finch2, res.finch3)))
## End(Not run)