plotObsVsPred {caret} | R Documentation |
Plot Observed versus Predicted Results in Regression and Classification Models
Description
This function takes an object (preferably from the function
extractPrediction
) and creates a lattice plot. For numeric
outcomes, the observed and predicted data are plotted with a 45 degree
reference line and a smoothed fit. For factor outcomes, a dotplot plot is
produced with the accuracies for the different models.
Usage
plotObsVsPred(object, equalRanges = TRUE, ...)
Arguments
object |
an object (preferably from the function
|
equalRanges |
a logical; should the x- and y-axis ranges be the same? |
... |
Details
If the call to extractPrediction
included test data, these
data are shown, but if unknowns were also included, they are not plotted
Value
A lattice object. Note that the plot has to be printed to be displayed (especially in a loop).
Author(s)
Max Kuhn
Examples
## Not run:
# regression example
data(BostonHousing)
rpartFit <- train(BostonHousing[1:100, -c(4, 14)],
BostonHousing$medv[1:100],
"rpart", tuneLength = 9)
plsFit <- train(BostonHousing[1:100, -c(4, 14)],
BostonHousing$medv[1:100],
"pls")
predVals <- extractPrediction(list(rpartFit, plsFit),
testX = BostonHousing[101:200, -c(4, 14)],
testY = BostonHousing$medv[101:200],
unkX = BostonHousing[201:300, -c(4, 14)])
plotObsVsPred(predVals)
#classification example
data(Satellite)
numSamples <- dim(Satellite)[1]
set.seed(716)
varIndex <- 1:numSamples
trainSamples <- sample(varIndex, 150)
varIndex <- (1:numSamples)[-trainSamples]
testSamples <- sample(varIndex, 100)
varIndex <- (1:numSamples)[-c(testSamples, trainSamples)]
unkSamples <- sample(varIndex, 50)
trainX <- Satellite[trainSamples, -37]
trainY <- Satellite[trainSamples, 37]
testX <- Satellite[testSamples, -37]
testY <- Satellite[testSamples, 37]
unkX <- Satellite[unkSamples, -37]
knnFit <- train(trainX, trainY, "knn")
rpartFit <- train(trainX, trainY, "rpart")
predTargets <- extractPrediction(list(knnFit, rpartFit),
testX = testX,
testY = testY,
unkX = unkX)
plotObsVsPred(predTargets)
## End(Not run)