pickSizeBest {caret} | R Documentation |
Backwards Feature Selection Helper Functions
Description
Ancillary functions for backwards selection
Usage
pickSizeBest(x, metric, maximize)
pickSizeTolerance(x, metric, tol = 1.5, maximize)
pickVars(y, size)
caretFuncs
ldaFuncs
treebagFuncs
gamFuncs
rfFuncs
lmFuncs
nbFuncs
lrFuncs
Arguments
x |
a matrix or data frame with the performance metric of interest |
metric |
a character string with the name of the performance metric that should be used to choose the appropriate number of variables |
maximize |
a logical; should the metric be maximized? |
tol |
a scalar to denote the acceptable difference in optimal performance (see Details below) |
y |
a list of data frames with variables |
size |
an integer for the number of variables to retain |
Format
An object of class list
of length 6.
An object of class list
of length 6.
An object of class list
of length 6.
An object of class list
of length 6.
An object of class list
of length 6.
An object of class list
of length 6.
An object of class list
of length 6.
An object of class list
of length 6.
Details
This page describes the functions that are used in backwards selection (aka
recursive feature elimination). The functions described here are passed to
the algorithm via the functions
argument of rfeControl
.
See rfeControl
for details on how these functions should be
defined.
The 'pick' functions are used to find the appropriate subset size for
different situations. pickBest
will find the position associated with
the numerically best value (see the maximize
argument to help define
this).
pickSizeTolerance
picks the lowest position (i.e. the smallest subset
size) that has no more of an X percent loss in performances. When
maximizing, it calculates (O-X)/O*100, where X is the set of performance
values and O is max(X). This is the percent loss. When X is to be minimized,
it uses (X-O)/O*100 (so that values greater than X have a positive "loss").
The function finds the smallest subset size that has a percent loss less
than tol
.
Both of the 'pick' functions assume that the data are sorted from smallest subset size to largest.
Author(s)
Max Kuhn
See Also
Examples
## For picking subset sizes:
## Minimize the RMSE
example <- data.frame(RMSE = c(1.2, 1.1, 1.05, 1.01, 1.01, 1.03, 1.00),
Variables = 1:7)
## Percent Loss in performance (positive)
example$PctLoss <- (example$RMSE - min(example$RMSE))/min(example$RMSE)*100
xyplot(RMSE ~ Variables, data= example)
xyplot(PctLoss ~ Variables, data= example)
absoluteBest <- pickSizeBest(example, metric = "RMSE", maximize = FALSE)
within5Pct <- pickSizeTolerance(example, metric = "RMSE", maximize = FALSE)
cat("numerically optimal:",
example$RMSE[absoluteBest],
"RMSE in position",
absoluteBest, "\n")
cat("Accepting a 1.5 pct loss:",
example$RMSE[within5Pct],
"RMSE in position",
within5Pct, "\n")
## Example where we would like to maximize
example2 <- data.frame(Rsquared = c(0.4, 0.6, 0.94, 0.95, 0.95, 0.95, 0.95),
Variables = 1:7)
## Percent Loss in performance (positive)
example2$PctLoss <- (max(example2$Rsquared) - example2$Rsquared)/max(example2$Rsquared)*100
xyplot(Rsquared ~ Variables, data= example2)
xyplot(PctLoss ~ Variables, data= example2)
absoluteBest2 <- pickSizeBest(example2, metric = "Rsquared", maximize = TRUE)
within5Pct2 <- pickSizeTolerance(example2, metric = "Rsquared", maximize = TRUE)
cat("numerically optimal:",
example2$Rsquared[absoluteBest2],
"R^2 in position",
absoluteBest2, "\n")
cat("Accepting a 1.5 pct loss:",
example2$Rsquared[within5Pct2],
"R^2 in position",
within5Pct2, "\n")