slm {care}R Documentation

Shrinkage Estimation of Regression Coefficients


slm fits a linear model and computes (standardized) regression coefficients by plugin of shrinkage estimates of correlations and variances. Using the argument predlist several models can be fitted on the same data set.

make.predlist constructs a predlist argument for use with slm.


slm(Xtrain, Ytrain, predlist, lambda, lambda.var, diagonal=FALSE, verbose=TRUE)
## S3 method for class 'slm'
predict(object, Xtest, verbose=TRUE, ...)
make.predlist(ordering, numpred, name="SIZE")



Matrix of predictors (columns correspond to variables).


Univariate continous response variable.


A list specifying the predictors to be included when fitting the linear regression. Each entry in the list is a vector containing the indices of variables used per model. If left unspecified single full-sized model using all variables in Xtrain is assumed. For a given ordering of covariables a suitable predlist can be generated using the helper function make.predlist - see examples below.


The correlation shrinkage intensity (range 0-1). If not specified (the default) it is estimated using an analytic formula from Sch\"afer and Strimmer (2005). For lambda=0 the empirical correlations are used.


The variance shrinkage intensity (range 0-1). If not specified (the default) it is estimated using an analytic formula from Opgen-Rhein and Strimmer (2007). For lambda.var=0 the empirical variances are used.


If diagonal=FALSE (the default) then the correlation among predictor veriables assumed to be non-zero and is estimated from data. If diagonal=TRUE then it is assumed that the correlation among predictors vanishes and is set to zero.


If verbose=TRUE then the estimated shrinkage intensities are reported.


An slm fit object obtained from the function slm.


A matrix containing the test data set. Note that the rows correspond to observations and the columns to variables.


Additional arguments for generic predict.


The ordering of the predictors (most important predictors are first).


The number of included predictors (may be a scalar or a vector). The predictors are included in the order specified by ordering.


The name assigned to each model is name plus "." and the number of included predictors.


The regression coefficients are obtained by estimating the joint joint covariance matrix of the response and the predictors, and subsequently computing the the regression coefficients by inversion of this matrix - see Opgen-Rhein and Strimmer (2007). As estimators for the covariance matrix either the standard empirical estimator or a Stein-type shrinkage estimator is employed. The use of the empirical covariance leads to the OLS estimates of the regression coefficients, whereas otherwise shrinkage estimates are obtained.


slm returns a list with the following components:

regularization: The shrinkage intensities used for estimating correlations and variances.

std.coefficients: The standardized regression coefficients, i.e. the regression coefficients computed from centered and standardized input data. Thus, by construction the intercept is zero. Furthermore, for diagonal=TRUE the standardized regression coefficient for each predictor is identical to the respective marginal correlation.

coefficients: Regression coefficients.

numpred: The number of predictors used in each investigated model.

R2: For diagonal=TRUE this is the multiple correlation coefficient between the response and the predictor, or the proportion of explained variance, with range from 0 to 1. For diagonal=TRUE this equals the sum of squared marginal correlations. Note that this sum may be larger than 1!

sd.resid: The residual unexplained error.

predict.slm returns the means predicted for each sample and model as well as the corresponding predictive standard deviations (attached as attribute "sd").


Korbinian Strimmer (


Opgen-Rhein, R., and K. Strimmer. 2007. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol. 1: 37. <DOI:10.1186/1752-0509-1-37>

Sch\"afer, J., and K. Strimmer. 2005. A shrinkage approach to large-scale covariance estimation and implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4: 32. <DOI:10.2202/1544-6115.1175>

See Also



# load care library

## example with large number of samples and small dimension
## (using empirical estimates of regression coefficients)

# diabetes data
x = efron2004$x
y = efron2004$y
n = dim(x)[1]
d = dim(x)[2]
xnames = colnames(x)

# empirical regression coefficients
fit = slm(x, y, lambda=0, lambda.var=0)
# note that in this example the regression coefficients
# and the standardized regression coefficients are identical
# as the input data have been standardized to mean zero and variance one

# compute corresponding t scores / partial correlations
df = n-d-1
pcor = pcor.shrink(cbind(y,x), lambda=0)[-1,1] 
t = pcor * sqrt(df/(1-pcor^2))
t.pval = 2 - 2 * pt(abs(t), df)
b = fit$coefficients[1,-1]
cbind(b, pcor, t, t.pval)

# compare results with those from lm function
lm.out = lm(y ~ x)

# prediction of fitted values at the position of the training data
mu.hat = predict(fit, x) # precticted means
attr(mu.hat, "sd") # predictive error

# ordering of the variables using squared empirical CAR score
car = carscore(x, y, lambda=0)
ocar = order(car^2, decreasing=TRUE)

# CAR regression models with 5, 7, 9 included predictors
car.predlist = make.predlist(ocar, numpred = c(5,7,9), name="CAR")
slm(x, y, car.predlist, lambda=0, lambda.var=0)

# plot regression coefficients for all possible CAR models

car.predlist = make.predlist(ocar, numpred = 1:p, name="CAR")
cm = slm(x, y, car.predlist, lambda=0, lambda.var=0)
bmat = cm$coefficients[,-1]


plot(1:p, bmat[,1], type="l", 
  ylab="estimated regression coefficients", 
  xlab="number of included predictors", 
  main="CAR Regression Models for Diabetes Data", 
  xlim=c(1,p+1), ylim=c(min(bmat), max(bmat)))

for (i in 2:p) lines(1:p, bmat[,i], col=i, lty=i)
for (i in 1:p) points(1:p, bmat[,i], col=i)
for (i in 1:p) text(p+0.5, bmat[p,i], xnames[i])

plot(1:p, cm$R2, type="l", 
  ylab="estimated R2",
  xlab="number of included predictors",
  main="Proportion of Explained Variance",
R2max = max(cm$R2)
lines(c(1,p), c(R2max, R2max), col=2)


## example with small number of samples and large dimension
## (using shrinkage estimates of regression coefficients)

dim(lu2004$x)    # 30 403

fit = slm(lu2004$x, lu2004$y)

[Package care version 1.1.11 Index]