ard_stats_wilcox_test {cardx} | R Documentation |
ARD Wilcoxon Rank-Sum Test
Description
Analysis results data for paired and non-paired Wilcoxon Rank-Sum tests.
Usage
ard_stats_wilcox_test(data, variables, by = NULL, conf.level = 0.95, ...)
ard_stats_paired_wilcox_test(data, by, variables, id, conf.level = 0.95, ...)
Arguments
data |
( |
variables |
( |
by |
( |
conf.level |
(scalar |
... |
arguments passed to |
id |
( |
Details
For the ard_stats_wilcox_test()
function, the data is expected to be one row per subject.
The data is passed as wilcox.test(data[[variable]] ~ data[[by]], paired = FALSE, ...)
.
For the ard_stats_paired_wilcox_test()
function, the data is expected to be one row
per subject per by level. Before the test is calculated, the data are
reshaped to a wide format to be one row per subject.
The data are then passed as
wilcox.test(x = data_wide[[<by level 1>]], y = data_wide[[<by level 2>]], paired = TRUE, ...)
.
Value
ARD data frame
Examples
cards::ADSL |>
dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
ard_stats_wilcox_test(by = "ARM", variables = "AGE")
# constructing a paired data set,
# where patients receive both treatments
cards::ADSL[c("ARM", "AGE")] |>
dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
dplyr::mutate(.by = ARM, USUBJID = dplyr::row_number()) |>
dplyr::arrange(USUBJID, ARM) |>
ard_stats_paired_wilcox_test(by = ARM, variables = AGE, id = USUBJID)