CIetterson {carcass} | R Documentation |
Confidence interval for the functions ettersonEq14, ettersonEq14v1 and ettersonEq14v2
Description
Calculates the Monte Carlo confidence intervals for the estimated carcass detection probability when persistence probability and searcher efficiency are uncertain.
Usage
CIetterson(s, s.lwr, s.upr, f, f.lwr, f.upr, J, s.time.variance = "carcass age",
f.time.variance = "number of searches", nsim = 1000, ci = 0.95)
Arguments
s |
point estiate for persistence probability (see help file for functions etterson14, ettersonEq14v1 or ettersonEq14v2) |
s.lwr |
lower limit of the 95% confidence interval of persistence probability |
s.upr |
upper limit of the 95% confidence interval of persistence probability |
f |
point estimate for the searcher efficiency (see help file for functions etterson14, ettersonEq14v1 or ettersonEq14v2 |
f.lwr |
lower limit of the 95% confidence interval of searcher efficiency |
f.upr |
upper limit of the 95% confidence interval of searcher efficiency |
J |
vector of search intervals |
s.time.variance |
character, one of "date" or "carcass age" |
f.time.variance |
character, one of "date" or "number of searches" |
nsim |
number of Monte Carlo simulations |
ci |
size of the confidence interval, default is 0.95 |
Details
The time variance in s and f is either both with date or both with carcass age and number of searches, respectively. In case of constant s and f, the function uses ettersonEq14 independent of the arguments s.time.variance or f.time.variance, when only one value is given for both parameters.
Value
a list
p.lower |
lower limit of the confidence interval |
p.upper |
upper limit of the confidence interval |
Author(s)
F. Korner
Examples
J <- c(2,3,2,4,3,5,3,2,3,4)
s <- plogis(seq(0.2, 2, length=sum(J)))
f <- plogis(seq(1.5, 0.9, length=length(J)))
s.lwr<- plogis(seq(0.2, 2, length=sum(J))-0.5)
f.lwr <- plogis(seq(1.5, 0.9, length=length(J))-0.3)
s.upr <- plogis(seq(0.2, 2, length=sum(J))+0.5)
f.upr <- plogis(seq(1.5, 0.9, length=length(J))+0.3)
CIetterson(s=s, s.lwr=s.lwr, s.upr=s.upr, f=f, f.lwr=f.lwr, f.upr=f.upr, J=J, nsim=100)
# nsim is too low, please, increase!