normalize_cansim_values {cansim} | R Documentation |
Normalize retrieved data table values to appropriate scales
Description
Facilitates working with Statistics Canada data table values retrieved using the package by setting all units to counts/dollars instead of millions, etc. If "replacement_value" is not set, it will replace the VALUE
field with normalized values and drop the scale
column. Otherwise it will keep the scale columns and create a new column named replacement_value with the normalized value. It will attempt to parse the REF_DATE
field and create an R date variable. This is currently experimental.
Usage
normalize_cansim_values(
data,
replacement_value = NA,
normalize_percent = TRUE,
default_month = "01",
default_day = "01",
factors = FALSE,
strip_classification_code = FALSE,
cansimTableNumber = NULL
)
Arguments
data |
A retrieved data table as returned from |
replacement_value |
(Optional) the name of the column the manipulated value should be returned in. Defaults to replacing the current value field |
normalize_percent |
(Optional) When |
default_month |
The default month that should be used when creating Date objects for annual data (default set to "01") |
default_day |
The default day of the month that should be used when creating Date objects for monthly data (default set to "01") |
factors |
(Optional) Logical value indicating if dimensions should be converted to factors. (Default set to |
strip_classification_code |
(strip_classification_code) Logical value indicating if classification code should be stripped from names. (Default set to |
cansimTableNumber |
(Optional) Only needed when operating on results of SQLite connections. |
Value
Returns the input tibble with with adjusted values
Examples
## Not run:
cansim_table <- get_cansim("34-10-0013")
normalize_cansim_values(cansim_table)
## End(Not run)