collect_and_normalize {cansim} | R Documentation |
Collect data from connection and normalize cansim table output
Description
Collect data from connection and normalize cansim table output
Usage
collect_and_normalize(
connection,
replacement_value = "val_norm",
normalize_percent = TRUE,
default_month = "07",
default_day = "01",
factors = FALSE,
strip_classification_code = FALSE,
disconnect = FALSE
)
Arguments
connection |
A connection to a local StatCan table SQLite database as returned by |
replacement_value |
(Optional) the name of the column the manipulated value should be returned in. Defaults to adding the 'val_norm' value field. |
normalize_percent |
(Optional) When |
default_month |
The default month that should be used when creating Date objects for annual data (default set to "07") |
default_day |
The default day of the month that should be used when creating Date objects for monthly data (default set to "01") |
factors |
(Optional) Logical value indicating if dimensions should be converted to factors. (Default set to |
strip_classification_code |
(Optional) Logical value indicating if classification code should be stripped from names. (Default set to |
disconnect |
(Optional) Logical value to indicate if the database connection should be disconnected. (Default is |
Value
A tibble with the collected and normalized data
Examples
## Not run:
library(dplyr)
con <- get_cansim_sqlite("34-10-0013")
data <- con %>%
filter(GEO=="Ontario") %>%
collect_and_normalize()
disconnect_cansim_sqlite(con)
## End(Not run)