tt.fun {calibrator} | R Documentation |
Integrals needed in KOH2001
Description
Calculates the three integrals needed for V
, under the
restrictions specified in the KOH2001 supplement
Usage
tt.fun(D1, extractor, x.i, x.j, test.for.symmetry=FALSE, method=1, phi)
ht.fun(x.i, x.j, D1, extractor, Edash.theta, H1, fast.but.opaque=TRUE,
x.star=NULL, t.vec=NULL, phi)
hh.fun(x.i, x.j, H1, E.theta, phi)
t.fun(x, D1, extractor, phi)
Arguments
D1 |
Matrix of code run points |
H1 |
regression basis functions for |
extractor |
Function to extract |
x |
Lat and long of a point in |
x.i |
Lat and long of first point (eg |
x.j |
Lat and long of second point (eg |
theta |
parameters |
Edash.theta |
Function to return expectation of |
E.theta |
Function to return expectation of |
test.for.symmetry |
In Set this argument to |
fast.but.opaque |
In |
x.star |
In |
t.vec |
In |
method |
In |
phi |
Hyperparameters |
Details
The four functions return integrals representing means taken over
theta
. To wit:
Function
tt.fun()
evaluates\int t(x_j,\theta)t(x_i,\theta)^Tp(\theta)d\theta
and is used in
V.fun()
. Note that this function is symmetric inx_i
andx_j
.Function
ht.fun()
evaluates\int h_1(x_j,\theta)t(x_i,\theta)^Tp(\theta)d\theta
and is used in
V.fun()
. Note that this function is not symmetric inx_i
andx_j
.Function
hh.fun()
evaluates\int h_1(x_j,\theta)h_1(x_i,\theta)^Tp(\theta)d\theta
and is used in
V.fun()
. Note that this function is symmetric inx_i
andx_j
.Function
t.fun()
evaluates\int t(x_i,\theta)^Tp(\theta)d\theta= \int c_1\left( (x_i,\theta),(x_j^*,t_j)\right)p(\theta)\,d\theta
using the formula
\sigma_1^2\left|I+2V_\theta\Omega_x\right|^{-1/2} \exp\left\{ -\left(x_i-x_j^*\right)^T\Omega_x\left(x_i-x_j^*\right) \right\}\times \exp\left\{ -\left(m_\theta-t_j\right)^T \left(2V_\theta+\Omega_t^{-1}\right)^{-1} \left(m_\theta-t_j\right)\right\}.
It is used in
Ez_eq7.supp()
. NB: do not confuse this function withtee()
, which is different.
These functions are not generally of much interest to the end user; they
are called by V.fun()
. They are defined separately as a
debugging aid, and to simplify the structure of V.fun()
.
Value
Each function returns a matrix as described in KOH2001
Author(s)
Robin K. S. Hankin
References
-
M. C. Kennedy and A. O'Hagan 2001. Bayesian calibration of computer models. Journal of the Royal Statistical Society B, 63(3) pp425-464
-
M. C. Kennedy and A. O'Hagan 2001. Supplementary details on Bayesian calibration of computer models, Internal report, University of Sheffield. Available at http://www.tonyohagan.co.uk/academic/ps/calsup.ps
-
R. K. S. Hankin 2005. Introducing BACCO, an R bundle for Bayesian analysis of computer code output, Journal of Statistical Software, 14(16)
See Also
Examples
data(toys)
tt.fun(D1=D1.toy, extractor=extractor.toy, x.i=D2.toy[1,],
x.j=D2.toy[2,], phi=phi.toy)
ht.fun(x.i=D2.toy[1,], x.j=D2.toy[2,], D1=D1.toy,
extractor=extractor.toy,
Edash.theta=Edash.theta.toy, H1=H1.toy, fast.but.opaque=FALSE, phi=phi.toy)
ht.fun(x.i=D2.toy[1,], x.j=D2.toy[2,], D1=D1.toy,
extractor=extractor.toy,
Edash.theta=Edash.theta.toy, H1=H1.toy, fast.but.opaque=TRUE,
x.star=extractor.toy(D1.toy)$x.star, t.vec=extractor.toy(D1.toy)$t.vec,
phi=phi.toy)
hh.fun(x.i=D2.toy[1,], x.j=D2.toy[2,],
H1=H1.toy, E.theta=E.theta.toy, phi=phi.toy)
t.fun(x=x.toy, D1=D1.toy, extractor=extractor.toy, phi=phi.toy)