phi.fun.toy {calibrator} | R Documentation |
Functions to create or change hyperparameters
Description
Function to create (phi.fun.toy
) or modify
(phi.change
) toy hyperparameters \phi
in a form suitable for passing to the other functions in the library.
The user should never make \phi
by hand; always use one of
these functions
Usage
phi.fun.toy(rho, lambda, psi1, psi1.apriori, psi2, psi2.apriori,
theta.apriori)
phi.change(phi.fun, old.phi = NULL, rho = NULL, lambda = NULL,
psi1 = NULL, psi1.apriori=NULL, psi1.apriori.mean=NULL,
psi1.apriori.sigma=NULL, psi2 = NULL, psi2.apriori=NULL,
psi2.apriori.mean=NULL, psi2.apriori.sigma=NULL,
theta.apriori=NULL, theta.apriori.mean=NULL,
theta.apriori.sigma=NULL)
Arguments
phi.fun |
In |
old.phi |
In function |
rho |
Correlation hyperparameter appearing in main equation |
lambda |
Noise hyperparameter |
psi1 |
Roughness lengths hyperparameter for design matrix
Recall that |
psi1.apriori |
A priori PDF for |
psi1.apriori.mean |
In function |
psi1.apriori.sigma |
In function |
psi2 |
Roughness lengths hyperparameter for Internal function NB: function |
psi2.apriori |
A priori PDF for As for The second element of |
psi2.apriori.mean |
In |
psi2.apriori.sigma |
In
|
theta.apriori |
Apriori PDF for
|
theta.apriori.mean |
In |
theta.apriori.sigma |
In |
Details
Note that this toy function contains within itself
pdm.maker.toy()
which extracts omega_x
and
omega_t
and sigma1squared
from psi1
.
This will need to be changed for real-world applications.
Earlier versions of the package had pdm.maker.toy()
defined separately.
Value
Returns a list of several elements:
rho |
Correlation hyperparameter |
lambda |
Noise hyperparameter |
psi1 |
Roughness lengths hyperparameter for |
psi1.apriori |
Apriori mean and variance matrix for |
psi2 |
Roughness lengths hyperparameter for |
psi2.apriori |
Apriori mean and variance matrix for |
theta.apriori |
Apriori mean and variance matrix for the parameters |
omega_x |
Positive definite matrix for the lat/long part of
|
omega_t |
Positive definite matrix for the code parameters theta,
whose diagonal is |
omegastar_x |
Positive definite matrix for use in equation 13 of
the supplement; represents distances between rows of |
sigma1squared |
variance |
sigma2squared |
variance |
omega_x.upper |
Upper triangular Cholesky decomposition for |
omega_x.lower |
Lower triangular Cholesky decomposition for |
omega_t.upper |
Upper triangular Cholesky decomposition for |
omega_t.lower |
Lower triangular Cholesky decomposition for |
a |
Precalculated matrix for use in
|
b |
Precalculated matrix for use in
|
c |
Precalculated scalar for use in
|
A |
Precalculated scalarfor use in
|
A.upper |
Upper triangular Cholesky decomposition for |
A.lower |
Lower triangular Cholesky decomposition for |
Author(s)
Robin K. S. Hankin
References
-
M. C. Kennedy and A. O'Hagan 2001. Bayesian calibration of computer models. Journal of the Royal Statistical Society B, 63(3) pp425-464
-
M. C. Kennedy and A. O'Hagan 2001. Supplementary details on Bayesian calibration of computer models, Internal report, University of Sheffield. Available at http://www.tonyohagan.co.uk/academic/ps/calsup.ps
-
R. K. S. Hankin 2005. Introducing BACCO, an R bundle for Bayesian analysis of computer code output, Journal of Statistical Software, 14(16)
See Also
Examples
phi.fun.toy(100,101,1:6,list(mean=rep(1,6),sigma=1+diag(6)),50:55,
list(mean=rep(0,4),sigma=0.1+diag(4)),
list(mean=0.1+(1:3),sigma=2.1+diag(3)))
phi.fun.toy(rho=1, lambda=1,
psi1 = structure(c(1.1, 1.2, 1.3, 1.4, 1.5, 0.7),
.Names = c("x", "y", "A","B", "C","s1sq")),
psi1.apriori = list(
mean=rep(0,6), sigma=0.4+diag(6)),
psi2=structure(c(2.1, 2.2), .Names = c("x","y")),
psi2.apriori = list(mean=rep(0,5),sigma=0.2+diag(5)),
theta.apriori = list(mean=0.1+(1:3),sigma=2.1+diag(3))
)
data(toys)
phi.change(phi.fun=phi.fun.toy, old.phi = phi.toy, rho = 100)
phi.change(phi.fun=phi.fun.toy, old.phi = phi.toy,
theta.apriori.sigma = 4*diag(3))
identical(phi.toy, phi.change(phi.fun=phi.fun.toy, old.phi=phi.toy))