cov.p5.supp {calibrator} | R Documentation |
Covariance function for posterior distribution of z(\cdot)
conditional on estimated hyperparameters and calibration parameters
\theta
.
Cov.eqn9.supp(x, xdash=NULL, theta, d, D1, D2, H1, H2, phi)
cov.p5.supp (x, xdash=NULL, theta, d, D1, D2, H1, H2, phi)
x |
first point, or ( |
xdash |
The second point, or ( |
theta |
Parameters. For |
d |
Observed values |
D1 |
Code run design matrix |
D2 |
Observation points of real process |
H1 |
Basis function for |
H2 |
Basis function for |
phi |
Hyperparameters |
Evaluates the covariance function: the last formula on page 5 of the supplement. The two functions documented here are vectorized differently.
Function Cov.eqn9.supp()
takes matrices for arguments x
and xdash
and a single vector for theta
. Evaluation is
thus taken at a single, fixed value of theta
. The function
returns a matrix whose rows correspond to rows of x
and whose
columns correspond to rows of xdash
.
Function cov.p5.supp()
takes a vector for arguments x
and
xdash
and a matrix for argument theta
whose rows are the
points in parameter space. A vector V
, with elements
corresponding to the rows of argument theta
is returned:
V[i] = \mbox{cov}\left(z(x),z(x')|\theta_i\right)
Returns a matrix of covariances
May return the transpose of the desired object
Robin K. S. Hankin
M. C. Kennedy and A. O'Hagan 2001. Bayesian calibration of computer models. Journal of the Royal Statistical Society B, 63(3) pp425-464
M. C. Kennedy and A. O'Hagan 2001. Supplementary details on Bayesian calibration of computer models, Internal report, University of Sheffield. Available at http://www.tonyohagan.co.uk/academic/ps/calsup.ps
R. K. S. Hankin 2005. Introducing BACCO, an R bundle for Bayesian analysis of computer code output, Journal of Statistical Software, 14(16)
data(toys)
x <- rbind(x.toy,x.toy+1,x.toy,x.toy,x.toy)
rownames(x) <- letters[1:5]
xdash <- rbind(x*2,x.toy)
rownames(xdash) <- LETTERS[1:6]
Cov.eqn9.supp(x=x,xdash=xdash,theta=theta.toy,d=d.toy,D1=D1.toy,
D2=D2.toy,H1=H1.toy,H2=H2.toy,phi=phi.toy)
phi.true <- phi.true.toy(phi=phi.toy)
Cov.eqn9.supp(x=x,xdash=xdash,theta=theta.toy,d=d.toy,D1=D1.toy,
D2=D2.toy,H1=H1.toy,H2=H2.toy,phi=phi.true)
# Now try a sequence of thetas:
cov.p5.supp(x=x.toy,theta=t.vec.toy,d=d.toy,D1=D1.toy,D2=D2.toy,
H1=H1.toy,H2=H2.toy,phi=phi.toy)