beta2hat.fun {calibrator} | R Documentation |
estimator for beta2
Description
estimates beta2 as per the equation of page 4 of the supplement. Used
by p.page4()
Usage
beta2hat.fun(D1, D2, H1, H2, V, z, etahat.d2, extractor, E.theta,
Edash.theta, phi)
Arguments
D1 |
Matrix of code run points |
D2 |
Matrix of observation points |
H1 |
regression basis functions |
H2 |
regression basis functions |
V |
overall covariance matrix |
z |
vector of observations |
etahat.d2 |
expectation as per |
extractor |
extractor function |
E.theta |
Expectation |
Edash.theta |
Expectation wrt thetadash |
phi |
hyperparameters |
Author(s)
Robin K. S. Hankin
References
-
M. C. Kennedy and A. O'Hagan 2001. Bayesian calibration of computer models. Journal of the Royal Statistical Society B, 63(3) pp425-464
-
M. C. Kennedy and A. O'Hagan 2001. Supplementary details on Bayesian calibration of computer models, Internal report, University of Sheffield. Available at http://www.tonyohagan.co.uk/academic/ps/calsup.ps
-
R. K. S. Hankin 2005. Introducing BACCO, an R bundle for Bayesian analysis of computer code output, Journal of Statistical Software, 14(16)
See Also
Examples
data(toys)
etahat.d2 <- etahat(D1=D1.toy, D2=D2.toy, H1=H1.toy, y=y.toy,
E.theta=E.theta.toy, extractor=extractor.toy, phi=phi.toy)
beta2hat.fun(D1=D1.toy, D2=D2.toy, H1=H1.toy, H2=H2.toy, V=NULL,
z=z.toy, etahat.d2=etahat.d2, extractor=extractor.toy,
E.theta=E.theta.toy, Edash.theta=Edash.theta.toy, phi=phi.toy)
jj <- create.new.toy.datasets(D1.toy , D2.toy)
phi.true <- phi.true.toy(phi=phi.toy)
y.toy <- jj$y.toy
z.toy <- jj$z.toy
d.toy <- jj$d.toy
etahat.d2 <- etahat(D1=D1.toy, D2=D2.toy, H1=H1.toy, y=y.toy,
E.theta=E.theta.toy, extractor=extractor.toy, phi=phi.toy)
beta2hat <- beta2hat.fun(D1=D1.toy, D2=D2.toy, H1=H1.toy, H2=H2.toy, V=NULL,
z=z.toy, etahat.d2=etahat.d2, extractor=extractor.toy,
E.theta=E.theta.toy, Edash.theta=Edash.theta.toy,
phi=phi.toy)
print(beta2hat)
plot(z.toy , H2.toy(D2.toy) %*% beta2hat)