beta1hat.fun {calibrator} | R Documentation |
beta1 estimator
Description
Least squares estimator for beta1
Usage
beta1hat.fun(D1, H1, y, phi)
Arguments
D1 |
code run points |
H1 |
regressor basis funs |
y |
code outputs |
phi |
hyperparameters |
Author(s)
Robin K. S. Hankin
References
-
M. C. Kennedy and A. O'Hagan 2001. Bayesian calibration of computer models. Journal of the Royal Statistical Society B, 63(3) pp425-464
-
M. C. Kennedy and A. O'Hagan 2001. Supplementary details on Bayesian calibration of computer models, Internal report, University of Sheffield. Available at http://www.tonyohagan.co.uk/academic/ps/calsup.ps
-
R. K. S. Hankin 2005. Introducing BACCO, an R bundle for Bayesian analysis of computer code output, Journal of Statistical Software, 14(16)
See Also
Examples
data(toys)
y.toy <- create.new.toy.datasets(D1=D1.toy , D2=D2.toy)$y.toy
beta1hat.fun(D1=D1.toy, H1=H1.toy, y=y.toy, phi=phi.toy)
# now cheat: force the hyperparameters to have the correct psi1:
phi.fix <- phi.change(old.phi=phi.toy,psi1=c(1, 0.5, 1.0, 1.0, 0.5, 0.4),phi.fun=phi.fun.toy)
# The value for psi1 is obtained by cheating and #examining the source
# code for computer.model(); see ?phi.change
# Create a new toy dataset with 40 observations:
D1.big <- latin.hypercube(40,5)
jj <- create.new.toy.datasets(D1=D1.big , D2=D2.toy)
# We know that the real coefficients are 4:9 because we
# we can cheat and look at the source code for computer.model()
# Now estimate the coefficients without cheating:
beta1hat.fun(D1=D1.big, H1=H1.toy, jj$y, phi=phi.toy)
# Not bad!
# We can do slightly better by cheating and using the
# correct value for the hyperparameters:
beta1hat.fun(D1=D1.big, H1=H1.toy, jj$y,phi=phi.true.toy(phi=phi.toy))
#marginally worse.
[Package calibrator version 1.2-8 Index]