| W {calibrator} | R Documentation |
covariance matrix for beta
Description
Covariance matrix of beta given theta, phi, d
Usage
W(D1, D2, H1, H2, theta, det=FALSE, phi)
Arguments
D1 |
Matrix whose rows are code run points |
D2 |
Matrix whose rows are observation points |
H1 |
regression function |
H2 |
regression function |
theta |
parameters |
det |
Boolean, with default |
phi |
Hyperparameters |
Details
This function is defined between equations 2 and 3 of the
supplement. It is used in functions betahat.fun.koh(),
p.eqn8.supp(), and p.joint().
Returns
{\mathbf W} (\theta)=
\left(
{\mathbf H}(\theta)^T {\mathbf V}_d(\theta)^{-1} {\mathbf H}(\theta)
\right)^{-1}
If only the determinant is required, setting argument det to
TRUE is faster than using det(W(..., det=FALSE)), as the
former avoids an unnecessary use of solve().
Author(s)
Robin K. S. Hankin
References
M. C. Kennedy and A. O'Hagan 2001. Bayesian calibration of computer models. Journal of the Royal Statistical Society B, 63(3) pp425-464
M. C. Kennedy and A. O'Hagan 2001. Supplementary details on Bayesian calibration of computer models, Internal report, University of Sheffield. Available at http://www.tonyohagan.co.uk/academic/ps/calsup.ps
R. K. S. Hankin 2005. Introducing BACCO, an R bundle for Bayesian analysis of computer code output, Journal of Statistical Software, 14(16)
See Also
Examples
data(toys)
W(D1=D1.toy, D2=D2.toy, H1=H1.toy, H2=H2.toy, theta=theta.toy, phi=phi.toy)