Ez.eqn9.supp {calibrator} | R Documentation |
Expectation as per equation 10 of KOH2001
Description
Expectation as per equation 10 of KOH2001 (not the supplement)
Usage
Ez.eqn9.supp(x, theta, d, D1, D2, H1, H2, phi)
Ez.eqn9.supp.vector(x, theta, d, D1, D2, H1, H2, phi)
Arguments
x |
point at which expectation is needed |
theta |
parameters |
d |
observations and code outputs |
D1 |
code run points |
D2 |
observation points |
H1 |
regression function for D1 |
H2 |
regression function for D2 |
phi |
hyperparameters |
Details
The user should always use Ez.eqn9.supp()
, which is a wrapper
for Ez.eqn9.supp.vector()
. The forms differ in their treatment
of \theta
. In the former, \theta
must be a
vector; in the latter, \theta
may be a matrix, in which
case Ez.eqn9.supp.vector()
is applied to the rows.
Note that Ez.eqn9.supp.vector()
is vectorized in x
but
not \theta
(if given a multi-row object,
apply(theta,1,...)
is used to evaluate the function for each
row supplied).
Function Ez.eqn9.supp()
will take multiple-row arguments for
x
and theta
. The output will be a matrix, with rows
corresponding to the rows of x
and columns corresponding to the
rows of theta
. See the third example below.
Note that function Ez.eqn9.supp()
determines whether there are
multiple values of \theta
by is.vector(theta)
. If
this returns TRUE
, it is assumed that \theta
is a
single point in multidimensional parameter space; if FALSE
, it
is assumed to be a matrix whose rows correspond to points in parameter
space.
So if \theta
is one dimensional, calling
Ez.eqn9.supp()
with a vector-valued \theta
will
fail because the function will assume that \theta
is a
single, multidimensional, point. To get round this, use
as.matrix(theta)
, which is not a vector; the rows are the (1D)
parameter values.
Author(s)
Robin K. S. Hankin
References
-
M. C. Kennedy and A. O'Hagan 2001. Bayesian calibration of computer models. Journal of the Royal Statistical Society B, 63(3) pp425-464
-
M. C. Kennedy and A. O'Hagan 2001. Supplementary details on Bayesian calibration of computer models, Internal report, University of Sheffield. Available at http://www.tonyohagan.co.uk/academic/ps/calsup.ps
-
R. K. S. Hankin 2005. Introducing BACCO, an R bundle for Bayesian analysis of computer code output, Journal of Statistical Software, 14(16)
See Also
Examples
data(toys)
Ez.eqn9.supp(x=x.toy, theta=theta.toy, d=d.toy, D1=D1.toy,
D2=D2.toy, H1=H1.toy,H2=H2.toy, phi=phi.toy)
Ez.eqn9.supp(x=D2.toy, theta=t.vec.toy, d=d.toy, D1=D1.toy,
D2=D2.toy, H1=H1.toy,H2=H2.toy, phi=phi.toy)
Ez.eqn9.supp(x=x.vec, theta=t.vec.toy, d=d.toy, D1=D1.toy,
D2=D2.toy, H1=H1.toy,H2=H2.toy, phi=phi.toy)