covmat {cabootcrs} | R Documentation |
Extract a single 2 by 2 covariance matrix
Description
covmat
extracts a 2 by 2 covariance matrix for one data point on two dimensions,
allowing the confidence ellipse to be plotted
Usage
covmat(x, i, thing = "column", axis1 = 1, axis2 = 2, show = TRUE)
Arguments
x |
An object of class |
i |
The number of the row or column, note that in MCA this will be the number of the variable category (e.g. for p=3 variables with 5 categories each, column 8 is the 3rd category of the 2nd variable) |
thing |
Whether to extract the covariance matrix for the i-th
Note that default is "column" as this is more convenient for MCA |
axis1 |
First axis for which (co)variances are required |
axis2 |
Second axis for which (co)variances are required |
show |
If TRUE then print the extracted covariance matrix |
Details
This can be used with the ellipse() package to add the confidence ellipse to a picture from another package
Example: confidence ellipse for row or column i on axes 1,2 from cabootcrs() output Results is:
lines( ellipse(x=covmat(Results,i,"row",1,2,FALSE),
centre=Results@Rowprinccoord[i,cbind(1,2)], npoints=1000),
cex=1, pch=".", col="blue")
lines( ellipse(x=covmat(Results,i,"column",1,2,FALSE),
centre=Results@Colprinccoord[i,cbind(1,2)], npoints=1000),
cex=1, pch=".", col="blue")
Note that reflectaxes
will be needed if cabootcrs() and ca() axes
are reflected with respect to each other
Value
An object of class "matrix"
(square symmetric, 2 by 2)
See Also
cabootcrs-package
, cabootcrs
, allvarscovs
,
cabootcrsresults
Examples
results <- cabootcrs(DreamData, showresults=FALSE)
row2covmataxes12 <- covmat(results,2,"row")
col3covmataxes23 <- covmat(results,3,"column",2,3)
## Not run:
# There are now 3 variables with 5,4,3 categories, hence 12 columns
resultsmca <- cabootcrs(DreamData223by3, catype="mca", showresults=FALSE)
row2covmataxes12mca <- covmat(resultsmca,2,"column")
col3covmataxes23mca <- covmat(resultsmca,8,"column",2,3)
newvarcat2covmataxes12mca <- covmat(resultsmca,11,"column")
# Use ellipse() to put confidence regions around row points on a plot produced by ca().
# Note that reflectaxes() will be needed if cabootcrs() and ca() axes
# are reflected with respect to each other
library(ca)
library(ellipse)
TheData <- DreamData
Results <- cabootcrs(TheData, showresults=FALSE)
caResults <- ca(TheData)
plot(caResults)
for (i in 1:dim(TheData)[1]) {
lines( ellipse(x=covmat(Results,i,"row",1,2,FALSE),
centre=Results@Rowprinccoord[i,cbind(1,2)], npoints=1000),
cex=1, pch=".", col="blue")
}
## End(Not run)