runmin & runmax {caTools} R Documentation

## Minimum and Maximum of Moving Windows

### Description

Moving (aka running, rolling) Window Minimum and Maximum calculated over a vector

### Usage

```  runmin(x, k, alg=c("C", "R"),
endrule=c("min", "NA", "trim", "keep", "constant", "func"),
align = c("center", "left", "right"))
runmax(x, k, alg=c("C", "R"),
endrule=c("max", "NA", "trim", "keep", "constant", "func"),
align = c("center", "left", "right"))
```

### Arguments

 `x` numeric vector of length n or matrix with n rows. If `x` is a matrix than each column will be processed separately. `k` width of moving window; must be an integer between one and n `endrule` character string indicating how the values at the beginning and the end, of the array, should be treated. Only first and last `k2` values at both ends are affected, where `k2` is the half-bandwidth `k2 = k %/% 2`. `"min"` & `"max"` - applies the underlying function to smaller and smaller sections of the array. In case of min equivalent to: `for(i in 1:k2) out[i]=min(x[1:(i+k2)])`. Default. `"trim"` - trim the ends; output array length is equal to `length(x)-2*k2 (out = out[(k2+1):(n-k2)])`. This option mimics output of `apply` `(embed(x,k),1,FUN)` and other related functions. `"keep"` - fill the ends with numbers from `x` vector `(out[1:k2] = x[1:k2])` `"constant"` - fill the ends with first and last calculated value in output array `(out[1:k2] = out[k2+1])` `"NA"` - fill the ends with NA's `(out[1:k2] = NA)` `"func"` - same as `"min"` & `"max"` but implimented in R. This option could be very slow, and is included mostly for testing Similar to `endrule` in `runmed` function which has the following options: “`c("median", "keep", "constant")`” . `alg` an option allowing to choose different algorithms or implementations. Default is to use of code written in C (option `alg="C"`). Option `alg="R"` will use slower code written in R. Useful for debugging and studying the algorithm. `align` specifies whether result should be centered (default), left-aligned or right-aligned. If `endrule`="min" or "max" then setting `align` to "left" or "right" will fall back on slower implementation equivalent to `endrule`="func".

### Details

Apart from the end values, the result of y = runFUN(x, k) is the same as “`for(j=(1+k2):(n-k2)) y[j]=FUN(x[(j-k2):(j+k2)], na.rm = TRUE)`”, where FUN stands for min or max functions. Both functions can handle non-finite numbers like NaN's and Inf's the same way as `min(x, na.rm = TRUE)`).

The main incentive to write this set of functions was relative slowness of majority of moving window functions available in R and its packages. With the exception of `runmed`, a running window median function, all functions listed in "see also" section are slower than very inefficient “`apply(embed(x,k),1,FUN)`” approach. Relative speeds `runmin` and `runmax` functions is O(n) in best and average case and O(n*k) in worst case.

Both functions work with infinite numbers (`NA`,`NaN`,`Inf`, `-Inf`). Also default `endrule` is hardwired in C for speed.

### Value

Returns a numeric vector or matrix of the same size as `x`. Only in case of `endrule="trim"` the output vectors will be shorter and output matrices will have fewer rows.

### Author(s)

Jarek Tuszynski (SAIC) jaroslaw.w.tuszynski@saic.com

### See Also

Links related to:

• Other moving window functions from this package: `runmean`, `runquantile`, `runmad` and `runsd`

• R functions: `runmed`, `min`, `max`

• Similar functions in other packages: `rollmax` from zoo library

• generic running window functions: `apply```` (embed(x,k), 1, FUN)``` (fastest), `running` from gtools package (extremely slow for this purpose), `subsums` from magic library can perform running window operations on data with any dimensions.

### Examples

```  # show plot using runmin, runmax and runmed
k=25; n=200;
x = rnorm(n,sd=30) + abs(seq(n)-n/4)
col = c("black", "red", "green", "blue", "magenta", "cyan")
plot(x, col=col, main = "Moving Window Analysis Functions")
lines(runmin(x,k), col=col)
lines(runmean(x,k), col=col)
lines(runmax(x,k), col=col)
legend(0,.9*n, c("data", "runmin", "runmean", "runmax"), col=col, lty=1 )

# basic tests against standard R approach
a = runmin(x,k, endrule="trim") # test only the inner part
b = apply(embed(x,k), 1, min)   # Standard R running min
stopifnot(all(a==b));
a = runmax(x,k, endrule="trim") # test only the inner part
b = apply(embed(x,k), 1, max)   # Standard R running min
stopifnot(all(a==b));

# test against loop approach
k=25;
data(iris)
x = iris[,1]
n = length(x)
x[seq(1,n,11)] = NaN;                # add NANs
k2 = k
k1 = k-k2-1
a1 = runmin(x, k)
a2 = runmax(x, k)
b1 = array(0,n)
b2 = array(0,n)
for(j in 1:n) {
lo = max(1, j-k1)
hi = min(n, j+k2)
b1[j] = min(x[lo:hi], na.rm = TRUE)
b2[j] = max(x[lo:hi], na.rm = TRUE)
}
# this test works fine at the R prompt but fails during package check - need to investigate
## Not run:
stopifnot(all(a1==b1, na.rm=TRUE));
stopifnot(all(a2==b2, na.rm=TRUE));

## End(Not run)

# Test if moving windows forward and backward gives the same results
# Two data sets also corespond to best and worst-case scenatio data-sets
k=51; n=200;
a = runmin(n:1, k)
b = runmin(1:n, k)
stopifnot(all(a[n:1]==b, na.rm=TRUE));
a = runmax(n:1, k)
b = runmax(1:n, k)
stopifnot(all(a[n:1]==b, na.rm=TRUE));

# test vector vs. matrix inputs, especially for the edge handling
nRow=200; k=25; nCol=10
x = rnorm(nRow,sd=30) + abs(seq(nRow)-n/4)
x[seq(1,nRow,10)] = NaN;              # add NANs
X = matrix(rep(x, nCol ), nRow, nCol) # replicate x in columns of X
a = runmax(x, k)
b = runmax(X, k)
stopifnot(all(a==b[,1], na.rm=TRUE));        # vector vs. 2D array
stopifnot(all(b[,1]==b[,nCol], na.rm=TRUE)); # compare rows within 2D array
a = runmin(x, k)
b = runmin(X, k)
stopifnot(all(a==b[,1], na.rm=TRUE));        # vector vs. 2D array
stopifnot(all(b[,1]==b[,nCol], na.rm=TRUE)); # compare rows within 2D array

# Compare C and R algorithms to each other for extreme window sizes
numeric.test = function (x, k) {
a = runmin( x, k, alg="C")
b = runmin( x, k, alg="R")
c =-runmax(-x, k, alg="C")
d =-runmax(-x, k, alg="R")
stopifnot(all(a==b, na.rm=TRUE));
#stopifnot(all(c==d, na.rm=TRUE));
#stopifnot(all(a==c, na.rm=TRUE));
stopifnot(all(b==d, na.rm=TRUE));
}
n=200;                               # n is an even number
x = rnorm(n,sd=30) + abs(seq(n)-n/4) # random data
for(i in 1:5) numeric.test(x, i)     # test for small window size
for(i in 1:5) numeric.test(x, n-i+1) # test for large window size
n=201;                               # n is an odd number
x = rnorm(n,sd=30) + abs(seq(n)-n/4) # random data
for(i in 1:5) numeric.test(x, i)     # test for small window size
for(i in 1:5) numeric.test(x, n-i+1) # test for large window size
n=200;                               # n is an even number
x = rnorm(n,sd=30) + abs(seq(n)-n/4) # random data
x[seq(1,200,10)] = NaN;              # with some NaNs
for(i in 1:5) numeric.test(x, i)     # test for small window size
for(i in 1:5) numeric.test(x, n-i+1) # test for large window size
n=201;                               # n is an odd number
x = rnorm(n,sd=30) + abs(seq(n)-n/4) # random data
x[seq(1,200,2)] = NaN;               # with some NaNs
for(i in 1:5) numeric.test(x, i)     # test for small window size
for(i in 1:5) numeric.test(x, n-i+1) # test for large window size

# speed comparison
## Not run:
n = 1e7;  k=991;
x1 = runif(n);                       # random data - average case scenario
x2 = 1:n;                            #  best-case scenario data for runmax
x3 = n:1;                            # worst-case scenario data for runmax
system.time( runmax( x1,k,alg="C"))  # C alg on average data O(n)
system.time( runmax( x2,k,alg="C"))  # C alg on  best-case data O(n)
system.time( runmax( x3,k,alg="C"))  # C alg on worst-case data O(n*k)
system.time(-runmin(-x1,k,alg="C"))  # use runmin to do runmax work
system.time( runmax( x1,k,alg="R"))  # R version of the function
x=runif(1e5); k=1e2;                 # reduce vector and window sizes
system.time(runmax(x,k,alg="R"))     # R version of the function
system.time(apply(embed(x,k), 1, max)) # standard R approach

## End(Not run)
```

[Package caTools version 1.18.2 Index]