plot_caROC {caROC} | R Documentation |
Plot covariate-adjusted ROC.
Description
Function to plot the ROC curve generated from caROC().
Usage
plot_caROC(myROC, ...)
Arguments
myROC |
ROC output from caROC() function. |
... |
Arguments to tune generated plots. |
Details
This function can be used to plot other ROC curve, as long as the input contains two components "sensitivity" and "specificity".
Value
Plot the ROC curve.
Author(s)
Ziyi Li <zli16@mdanderson.org>
Examples
n1 = n0 = 500
## generate data
Z_D <- rbinom(n1, size = 1, prob = 0.3)
Z_C <- rbinom(n0, size = 1, prob = 0.7)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C == 0) + Y_C_Z1 * (Z_C == 1)
M1 <- Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)
diseaseData <- data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)
userFormula = "M~Z"
ROC1 <- caROC(diseaseData,controlData,userFormula,
mono_resp_method = "none")
ROC2 <- caROC(diseaseData,controlData,userFormula,
mono_resp_method = "ROC")
plot_caROC(ROC1)
plot_caROC(ROC2, col = "blue")
[Package caROC version 0.1.5 Index]