cAIC4-package {cAIC4} | R Documentation |
Conditional Akaike Information Criterion for 'lme4' and 'nlme'
Description
Provides functions for the estimation of the conditional Akaike information in generalized mixed-effect models fitted with (g)lmer() from 'lme4', lme() from 'nlme' and gamm() from 'mgcv'. For a manual on how to use 'cAIC4', see Saefken et al. (2021) <doi:10.18637/jss.v099.i08>.
Details
The DESCRIPTION file:
Package: | cAIC4 |
Type: | Package |
Title: | Conditional Akaike Information Criterion for 'lme4' and 'nlme' |
Version: | 1.0 |
Date: | 2021-09-22 |
Author: | Benjamin Saefken, David Ruegamer, Philipp Baumann and Rene-Marcel Kruse, with contributions from Sonja Greven and Thomas Kneib |
Maintainer: | David Ruegamer <david.ruegamer@gmail.com> |
Depends: | lme4(>= 1.1-6), methods, Matrix, stats4, nlme |
Imports: | RLRsim, mgcv, mvtnorm |
Suggests: | gamm4 |
Description: | Provides functions for the estimation of the conditional Akaike information in generalized mixed-effect models fitted with (g)lmer() from 'lme4', lme() from 'nlme' and gamm() from 'mgcv'. For a manual on how to use 'cAIC4', see Saefken et al. (2021) <doi:10.18637/jss.v099.i08>. |
License: | GPL (>= 2) |
Packaged: | 2021-09-22 12:34:56 UTC; david |
NeedsCompilation: | no |
Date/Publication: | 2014-08-12 11:48:10 |
RoxygenNote: | 7.1.1 |
Index of help topics:
Zambia Subset of the Zambia data set on childhood malnutrition anocAIC Comparison of several lmer objects via cAIC cAIC Conditional Akaike Information for 'lme4' and 'lme' cAIC4-package Conditional Akaike Information Criterion for 'lme4' and 'nlme' deleteZeroComponents Delete random effect terms with zero variance getWeights Optimize weights for model averaging. getcondLL Function to calculate the conditional log-likelihood guWahbaData Data from Gu and Wahba (1991) modelAvg Model Averaging for Linear Mixed Models predictMA Prediction of model averaged linear mixed models print.cAIC Print method for cAIC stepcAIC Function to stepwise select the (generalized) linear mixed model fitted via (g)lmer() or (generalized) additive (mixed) model fitted via gamm4() with the smallest cAIC. summaryMA Summary of model averaged linear mixed models
Author(s)
Benjamin Saefken, David Ruegamer, Philipp Baumann and Rene-Marcel Kruse, with contributions from Sonja Greven and Thomas Kneib
Maintainer: David Ruegamer <david.ruegamer@gmail.com>
References
Saefken, B., Kneib T., van Waveren C.-S. and Greven, S. (2014) A unifying approach to the estimation of the conditional Akaike information in generalized linear mixed models. Electronic Journal Statistics Vol. 8, 201-225.
Greven, S. and Kneib T. (2010) On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika 97(4), 773-789.
Efron , B. (2004) The estimation of prediction error. J. Amer. Statist. Ass. 99(467), 619-632.
See Also
Examples
b <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
cAIC(b)