c212.ssBH {c212} | R Documentation |
Implementation of Subset Benjamini-Hochberg for False Discover Rate control
Description
The Subset Benjamini-Hochberg allows for the use of subsets to allow the extension of the Benjamini-Hochberg procedure to types of non-positively dependent regression statistics.
Usage
c212.ssBH(trial.data, alpha = 0.05)
Arguments
trial.data |
File or data frame containing the p-values for the hypotheses being tested. The data must contain the following columns: B: the index of the groupings; p: the p-values of the hypotheses. |
alpha |
The level for FDR control. E.g. 0.05. |
Value
The subset of hypotheses in file or trial.data deemed significant by the Subset Benjamini-Hochberg process.
Note
This process is at most as powerful as the Benjamini-Hochberg procedure. The subsets do not have to be disjoint.
Author(s)
R. Carragher
References
Yekutieli, Daniel (2008). False discovery rate control for non-positively regression dependent test statistics. Journal of Statistical Planning and Inference, 138(2):405-415.
Examples
trial.data <- data.frame(B = c(1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4),
j = c(1, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5),
AE = c("AE1", "AE2", "AE3", "AE4", "AE5", "AE6", "AE7", "AE8", "AE9", "AE10", "AE11",
"AE12", "AE13", "AE14", "AE15", "AE16", "AE17"),
p = c(0.135005, 0.010000, 0.001000, 0.005000, 0.153501, 0.020000, 0.0013, 0.0023,
0.011, 0.023000, 0.016, 0.0109, 0.559111, 0.751986, 0.308339, 0.837154, 0.325882))
c212.ssBH(trial.data, alpha=0.05)
## Not run:
B j AE p
1 2 2 AE3 0.0010
2 2 3 AE4 0.0050
3 3 2 AE7 0.0013
4 3 3 AE8 0.0023
5 3 7 AE12 0.0109
6 3 4 AE9 0.0110
## End(Not run)