c212.BB {c212}R Documentation

Implementation of the Berry and Berry Three-Level Hierarchical Model.

Description

Implementaion of Berry and Berry model (2004), also model 1b from Xia et al (2011).

Usage

	c212.BB(trial.data, burnin = 20000, iter = 60000, nchains = 3,
	theta_algorithm = "MH", sim_type = "SLICE",
	global.sim.params = data.frame(type = c("MH", "MH", "MH", "MH",
	"SLICE", "SLICE", "SLICE"),
	param = c("sigma_MH_alpha", "sigma_MH_beta", "sigma_MH_gamma",
	"sigma_MH_theta", "w_alpha", "w_beta", "w_gamma"),
	value = c(3, 3, 0.2, 0.2, 1, 1, 1), control = c(0, 0, 0, 0, 6, 6, 6),
	stringsAsFactors = FALSE),
	sim.params = NULL,
	initial_values = NULL,
	hyper_params = list(mu.gamma.0.0 = 0,
	tau2.gamma.0.0 = 10, mu.theta.0.0 = 0, tau2.theta.0.0 = 10,
	alpha.gamma.0.0 = 3, beta.gamma.0.0 = 1, alpha.theta.0.0 = 3,
	beta.theta.0.0 = 1, alpha.gamma = 3,
	beta.gamma = 1, alpha.theta = 3, beta.theta = 1,
	lambda.alpha = 1.0, lambda.beta = 1.0),
	global.pm.weight = 0.5,
	pm.weights = NULL,
	adapt_params = data.frame(min_w = 0.25, chains = 3, burnin = 20000,
	iter = 40000),
	adapt_phase=0)

Arguments

trial.data

A file or data frame containing the trial data. It must contain must contain the columns B (body-system), AE (adverse event), Group (1 - control, 2 treatment), Count (total number of events), Total (total number of participants).

burnin

The burnin period for the monte-carlo simulation. These are discarded from the returned samples.

iter

The total number of iterations for which the monte-carlo simulation is run. This includes the burnin period. The total number of samples returned is iter - burnin

nchains

The number of independent chains to run.

theta_algorithm

MCMC algorithm used to sample the theta variables. "MH" is the only currently supported stable algorithm.

sim_type

The type of MCMC method to use for simulating from non-standard distributions apart from theta. Allowed values are "MH" and "SLICE" for Metropolis_Hastings and Slice sampling respectively.

global.sim.params

A data frame containing the parameters for the simulation type sim_type. For "MH" the parameter is the variance of the normal distribution used to simulate the next candidate value centred on the current value. For "SLICE" the parameters are the estimated width of the slice and a value limiting the search for the next sample.

sim.params

A dataframe containing simulation parameters which override the global simulation parameters (global.sim.params) for particular model parameters. sim.params must contain the following columns: type: the simulation type ("MH" or "SLICE"); variable: the model parameter for which the simulation parameters are being overridden; B: the body-system (if applicable); AE: the adverse event (if applicable); param: the simulation parameter; value: the overridden value; control: the overridden control value.

The function c212.sim.control.params generates a template for sim.params which can be edited by the user.

initial_values

The initial values for starting the chains. If NULL (the default) is passed the function generates the initial values for the chains. initial_values is a list with the following format:

list(gamma, theta, mu.gamma, mu.theta, sigma2.gamma,
	sigma2.theta, pi, mu.gamma.0, mu.theta.0,
	tau2.gamma.0, tau2.theta.0, alpha.pi, beta.pi)

The function c212.gen.initial.values can be used to generate a template for the list which can be updated by the user if required. The formats of the list elements are as follows:

gamma, theta: dataframe with columns B, AE, chain, value

mu.gamma, mu.theta, sigma2.gamma, sigma2.theta, pi: dataframe with columns B, chain, value

mu.gamma.0, mu.theta.0, tau2.gamma.0, tau2.theta.0, alpha.pi, beta.pi: array of size chain.

hyper_params

The hyperparameters for the model. The default hyperparameters are those given in Berry and Berry 2004.

global.pm.weight

A global weighting for the proposal distribution used to sample theta.

pm.weights

Override global.pm.weight for specific adverse events.

adapt_params

Unused parameter.

adapt_phase

Unused parameter.

Details

The model is fitted by a Gibbs sampler. The details of the complete conditional densities are given in Berry and Berry (2004).

Value

The output from the simulation including all the sampled values is as follows:

list(id, theta_alg, sim_type, chains, nBodySys, maxAEs, nAE, AE, B,
	burnin, iter, mu.gamma.0, mu.theta.0, tau2.gamma.0,
	tau2.theta.0, mu.gamma, mu.theta, sigma2.gamma, sigma2.theta,
	pi, alpha.pi, beta.pi, alpha.pi_acc, beta.pi_acc, gamma, theta,
	gamma_acc, theta_acc, theta_zero_prop, theta_zero_acc)

where

id - a string identifying the version of the function

theta_alg - an string identifying the algorithm used to sample theta

sim_type - an string identifying the sampling method used for non-standard distributions, either "MH" or "SLICE"

chains - the number of chains for which the simulation was run

nBodySys - the number of body-systems

maxAEs - the maximum number of AEs in a body-system

nAE - an array. The number of AEs in each body-system.

AE - an array of dimension nBodySys, maxAEs. The Adverse Events.

B - an array. The body-systems.

mu.gamma.0 - array of samples of dimension chains, iter - burnin

mu.theta.0 - array of samples of dimension chains, iter - burnin

tau2.gamma.0 - array of samples of dimension chains, iter - burnin

tau2.theta.0 - array of samples of dimension chains, iter - burnin

mu.gamma - array of samples of dimension chains, nBodySys iter - burnin

mu.theta - array of samples of dimension chains, nBodySys iter - burnin

sigma2.gamma - array of samples of dimension chains, nBodySys iter - burnin

sigma2.theta - array of samples of dimension chains, nBodySys iter - burnin

pi - array of samples of dimension chains, nBodySys iter - burnin alpha.pi - array of samples of dimension chains, iter - burnin beta.pi - array of samples of dimension chains, iter - burnin

alpha.pi_acc - the acceptance rate for the alpha.pi samples if a Metropolis-Hastings method is used. An array of dimension chains, maxAEs

beta.pi_acc - the acceptance rate for the beta.pi samples if a Metropolis-Hastings method is used. An array of dimension chains, maxAEs

gamma - array of samples of dimension chains, nBodySys, maxAEs, iter - burnin

theta - array of samples of dimension chains, nBodySys, maxAEs, iter - burnin

gamma_acc - the acceptance rate for the gamma samples if a Metropolis-Hastings method is used. An array of dimension chains, nBodySys, maxAEs

theta_acc - the acceptance rate for the theta samples. An array of dimension chains, nBodySys, maxAEs

theta_zero_prop - the number of zeros proposed in theta sampling. An array of dimension chains, nBodySys, maxAEs theta_zero_acc - the acceptance rate for zeros for the theta samples. An array of dimension chains, nBodySys, maxAEs

Note

The function performs the simulation and returns the raw output. No checks for convergence are performed.

Author(s)

R. Carragher

References

S. M. Berry and D. A. Berry (2004). Accounting for multiplicities in assessing drug safety: a three- level hierarchical mixture model. Biometrics, 60(2):418-26.

H. Amy Xia, Haijun Ma, and Bradley P. Carlin (2011). Bayesian hierarchical modelling for detecting safety signals in clinical trials. Journal of Biopharmaceutical Statistics, 21(5):1006– 1029.

Scott M. Berry, Bradley P. Carlin, J. Jack Lee, and Peter M¨ller (2010). Bayesian adaptive methods for clinical trials. CRC Press.

Examples









































data(c212.trial.data)
raw = c212.BB(c212.trial.data, burnin = 100, iter = 200)

## Not run: 

data(c212.trial.data)
raw = c212.BB(c212.trial.data)

raw$B
[1] "Bdy-sys_1" "Bdy-sys_2" "Bdy-sys_3" "Bdy-sys_4" "Bdy-sys_5" "Bdy-sys_6"
[7] "Bdy-sys_7" "Bdy-sys_8"

mean(raw$theta[2, 1,1,])
[1] 0.1088401

median(raw$theta[2, 1,1,])
[1] 0


## End(Not run)

[Package c212 version 0.98 Index]