| stabpath {c060} | R Documentation | 
Stability path for glmnet models
Description
The function calculates the stability path for glmnet models, e.g. the selection probabilities of the features along the range of regularization parameters.
Usage
stabpath(y,x,size=0.632,steps=100,weakness=1,mc.cores=getOption("mc.cores", 2L),...)
Arguments
| y | response variable. Like for the glment function: Quantitative for  | 
| x | input matrix. Like for the glmnet function:
of dimension nobs x nvars; each row is an
observation vector. Can be in sparse matrix format (inherit
from class  | 
| size | proportion of samples drawn in every subsample used for the stability selection. | 
| steps | number of subsamples used for the stability selection. | 
| weakness | weakness parameter used for the randomised lasso as described in Meinshausen and B\"uhlmann (2010). For each subsample the features are reweighted by a random weight uniformly sampled in [weakness,1]. This additional randomisation leads to a more consistent estimation of the stable set of features. | 
| mc.cores | number of cores used for the parallelization. For unix like system the parallelization is done by forking using the function  | 
| ... | further arguments that are passed to the  | 
Value
an object of class "stabpath", which is a list of three objects
| fit | the fit object of class "glmnet" as returned from the glmnet function when applied to the complete data set. | 
| stabpath | a matrix which represents the stability path. | 
| qs | a vector holding the values of the average number of non-zero coefficients w.r.t to the lambdas in the regularization path. | 
Author(s)
Martin Sill m.sill@dkfz.de
References
Meinshausen N. and B\"uhlmann P. (2010), Stability Selection, Journal of the Royal Statistical Society: Series B (Statistical Methodology) Volume 72, Issue 4, pages 417–473.
Sill M., Hielscher T., Becker N. and Zucknick M. (2014), c060: Extended Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear Models, Journal of Statistical Software, Volume 62(5), pages 1–22. doi:10.18637/jss.v062.i05
See Also
Examples
## Not run: 
#gaussian
set.seed(1234)
x <- matrix(rnorm(100*1000,0,1),100,1000)
y <- x[1:100,1:1000]%*% c(rep(2,5),rep(-2,5),rep(.1,990))
res <- stabpath(y,x,weakness=1,mc.cores=2)
plot(res)
#binomial
y=sample(1:2,100,replace=TRUE)
res <- stabpath(y,x,weakness=1,mc.cores=2,family="binomial")
plot(res)
    
#multinomial
y=sample(1:4,100,replace=TRUE)
res <- stabpath(y,x,weakness=1,mc.cores=2,family="multinomial")
plot(res)
    
#poisson
N=100; p=1000
nzc=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(nzc)
f = x[,seq(nzc)]%*%beta
mu=exp(f)
y=rpois(N,mu)
res <- stabpath(y,x,weakness=1,mc.cores=2,family="poisson")
plot(res)
#Cox
library(survival)
set.seed(10101)
N=100;p=1000
nzc=p/3
x=matrix(rnorm(N*p),N,p)
beta=rnorm(nzc)
fx=x[,seq(nzc)]%*%beta/3
hx=exp(fx)
ty=rexp(N,hx)
tcens=rbinom(n=N,prob=.3,size=1)
y=cbind(time=ty,status=1-tcens)
res <- stabpath(y,x,weakness=1,mc.cores=2,family="cox")
plot(res)
## End(Not run)