predictProb.coxnet {c060} | R Documentation |
Extract predicted survival probabilities from a glmnet fit
Description
Extracts predicted survival probabilities from survival model fitted by glmnet, providing an interface as required by pmpec
.
Usage
## S3 method for class 'coxnet'
predictProb(object, response, x, times, complexity, ...)
Arguments
object |
a fitted model of class |
response |
a two-column matrix with columns named 'time' and 'status'. The latter is a binary variable, with '1' indicating death, and '0' indicating right censored. The function |
x |
|
times |
vector of evaluation time points. |
complexity |
lambda penalty value. |
... |
additional arguments, currently not used. |
Value
Matrix with probabilities for each evaluation time point in times
(columns) and each new observation (rows).
Author(s)
Thomas Hielscher \ t.hielscher@dkfz.de
References
Friedman, J., Hastie, T. and Tibshirani, R. (2008)
Regularization Paths for Generalized Linear Models via Coordinate
Descent, https://web.stanford.edu/~hastie/Papers/glmnet.pdf
Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010
https://www.jstatsoft.org/v33/i01/
Simon, N., Friedman, J., Hastie, T., Tibshirani, R. (2011)
Regularization Paths for Cox's Proportional Hazards Model via
Coordinate Descent, Journal of Statistical Software, Vol. 39(5)
1-13
https://www.jstatsoft.org/v39/i05/
Porzelius, C., Binder, H., and Schumacher, M. (2009)
Parallelized prediction error estimation for evaluation of high-dimensional models,
Bioinformatics, Vol. 25(6), 827-829.
Sill M., Hielscher T., Becker N. and Zucknick M. (2014), c060: Extended Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear Models, Journal of Statistical Software, Volume 62(5), pages 1–22.
doi:10.18637/jss.v062.i05
See Also
predictProb.glmnet
,peperr
, glmnet