pairwise.bzinb {bzinb} | R Documentation |
Pairwise underlying correlation based on bivariate zero-inflated negative binomial (BZINB) model
Description
For each pair of rows in the data, underlying corelation (\rho
) is calculated based on
bivariate zero-inflated negative binomial (BZINB) model.
Usage
pairwise.bzinb(
data,
nonzero.prop = TRUE,
fullParam = FALSE,
showFlag = FALSE,
nsample = NULL,
...
)
Arguments
data |
a matrix with nonnegative integers. rows represent the feature (or gene), and columns represent the sample. If not integers, rounded to the nearest integers. |
nonzero.prop |
logical. If |
fullParam |
logical. If |
showFlag |
logical. If |
nsample |
positive integer. If provided, |
... |
Other arguments passed on to |
Value
a table of pairwise underlying correlation (\rho
) and related statistics.
-
1
row number of the first vector of the pair -
2
row number of the second vector of the pair -
pair
row numbers of the pair -
rho
underlying correlation estimate -
se.rho
standard error of the underlying correlation estimate -
nonzero.1, nonzero.2
non-zero proportion of the first and the second vector. Returned ifnonzero.prop
isTRUE
. -
nonzero.min
pairwise minimum of non-zero proportions Returned ifnonzero.prop
isTRUE
. -
a0, a1, ..., p4
parameter estimates -
se.a0, se.a1, ..., se.p4
standard error of the parameter estimates -
logLik
log-likelihood of the maximum likelihood estimates
Author(s)
Hunyong Cho, Chuwen Liu, Jinyoung Park, and Di Wu
References
Cho, H., Liu, C., Preisser, J., and Wu, D. (In preparation), "A bivariate zero-inflated negative binomial model for identifying underlying dependence"
Examples
# generating four random vectors
set.seed(7)
data1 <- rbzinb(n = 20, a0 = 0.5, a1 = 1, a2 = 1,
b1 = 1, b2 = 1, p1 = 0.5, p2 = 0.2,
p3 = 0.2, p4 = 0.1)
set.seed(14)
data2 <- rbzinb(n = 20, a0 = 0.5, a1 = 1, a2 = 1,
b1 = 2, b2 = 2, p1 = 0.5, p2 = 0.2,
p3 = 0.2, p4 = 0.1)
data3 <- t(cbind(data1, data2))
# calculating all pairwise underlying correlations
## Not run: pairwise.bzinb(data3, showFlag = TRUE)