bzinb.se {bzinb} | R Documentation |
The bivariate zero-inflated negative binomial distribution - Standard error estimation
Description
Standard errors of the BZINB distribution parameter estimates are
calculated based on maximum likelihood estimation. If param
is NULL
,
the parameters are first estimated by bzinb
function.
Usage
bzinb.se(xvec, yvec, a0, a1, a2, b1, b2, p1, p2, p3, p4, param = NULL, ...)
Arguments
xvec , yvec |
a pair of bzinb random vectors. nonnegative integer vectors. If not integers, they will be rounded to the nearest integers. |
a0 , a1 , a2 |
shape parameters of the latent gamma variables. They must be positive. |
b1 , b2 |
scale parameters for the latent gamma variables. They must be positive. |
p1 , p2 , p3 , p4 |
proportions summing up to 1 ( |
param |
a vector of parameters ( |
... |
Other arguments passed on to |
Value
Standard error of rho
, logit.rho
, a0, a1, a2, b1, b2, p1, p2, p3
,
and p4
estimates, variance-covariance matrix (vcov
) and information matrix.
See bzinb
for more detail. iter
is NA
, if the param
is given.
Author(s)
Hunyong Cho, Chuwen Liu, Jinyoung Park, and Di Wu
References
Cho, H., Liu, C., Preisser, J., and Wu, D. (In preparation), "A bivariate zero-inflated negative binomial model for identifying underlying dependence"
Examples
set.seed(1)
data1 <- rbzinb(n = 20, a0 = 1, a1 = 1, a2 = 1,
b1 = 1, b2 = 1, p1 = 0.5, p2 = 0.2,
p3 = 0.2, p4 = 0.1)
bzinb.se(xvec = data1[,1], yvec = data1[,2],
param = c(5.5, 0.017, 0.017, 0.33, 0.36,
0.53, 0.30, 0.08, 0.09))