| bzinb.se {bzinb} | R Documentation |
The bivariate zero-inflated negative binomial distribution - Standard error estimation
Description
Standard errors of the BZINB distribution parameter estimates are
calculated based on maximum likelihood estimation. If param is NULL,
the parameters are first estimated by bzinb function.
Usage
bzinb.se(xvec, yvec, a0, a1, a2, b1, b2, p1, p2, p3, p4, param = NULL, ...)
Arguments
xvec, yvec |
a pair of bzinb random vectors. nonnegative integer vectors. If not integers, they will be rounded to the nearest integers. |
a0, a1, a2 |
shape parameters of the latent gamma variables. They must be positive. |
b1, b2 |
scale parameters for the latent gamma variables. They must be positive. |
p1, p2, p3, p4 |
proportions summing up to 1 ( |
param |
a vector of parameters ( |
... |
Other arguments passed on to |
Value
Standard error of rho, logit.rho, a0, a1, a2, b1, b2, p1, p2, p3,
and p4 estimates, variance-covariance matrix (vcov) and information matrix.
See bzinb for more detail. iter is NA, if the param
is given.
Author(s)
Hunyong Cho, Chuwen Liu, Jinyoung Park, and Di Wu
References
Cho, H., Liu, C., Preisser, J., and Wu, D. (In preparation), "A bivariate zero-inflated negative binomial model for identifying underlying dependence"
Examples
set.seed(1)
data1 <- rbzinb(n = 20, a0 = 1, a1 = 1, a2 = 1,
b1 = 1, b2 = 1, p1 = 0.5, p2 = 0.2,
p3 = 0.2, p4 = 0.1)
bzinb.se(xvec = data1[,1], yvec = data1[,2],
param = c(5.5, 0.017, 0.017, 0.33, 0.36,
0.53, 0.30, 0.08, 0.09))