| bp {bzinb} | R Documentation | 
The bivariate poisson distribution
Description
random generation (rbp), maximum likelihood estimation (bp), 
and log-likelihood. (lik.bp)  for the bivariate Poisson 
distribution with parameters equal to (m0, m1, m2).
Usage
lik.bp(xvec, yvec, m0, m1, m2, param = NULL)
rbp(n, m0, m1, m2, param = NULL)
bp(xvec, yvec, tol = 1e-06)
Arguments
xvec, yvec | 
 a pair of bp random vectors. nonnegative integer vectors. If not integers, they will be rounded to the nearest integers.  | 
m0, m1, m2 | 
 mean parameters of the Poisson variables. They must be positive.  | 
param | 
 a vector of parameters (  | 
n | 
 number of observations.  | 
tol | 
 tolerance for judging convergence.   | 
Value
-  
rbpgives a pair of random vectors following BP distribution. -  
bpgives the maximum likelihood estimates of a BP pair. -  
lik.bpgives the log-likelihood of a set of parameters for a BP pair. 
Author(s)
Hunyong Cho, Chuwen Liu, Jinyoung Park, and Di Wu
References
Cho, H., Liu, C., Preisser, J., and Wu, D. (In preparation), "A bivariate zero-inflated negative binomial model for identifying underlying dependence"
Kocherlakota, S. & Kocherlakota, K. (1992). Bivariate Discrete Distributions. New York: Marcel Dekker.
Examples
# generating a pair of random vectors
set.seed(1)
data1 <- rbp(n = 20, m0 = 1, m1 = 1, m2 = 1)
lik.bp(xvec = data1[, 1], yvec = data1[ ,2], 
          m0 = 1, m1 = 1, m2 = 1) 
bp(xvec = data1[,1], yvec = data1[,2])