estimates {bvpa}R Documentation

Estimation of Block-Basu Bivariate Pareto (BBBVPA) distribution

Description

Parameters estimation of BBBVPA distribution.

Usage

estimates(
  I,
  s1.int,
  s2.int,
  a0.int,
  a1.int,
  a2.int,
  tol.est = 1e-05,
  MxIter.no = 2000,
  rate = 1e-04,
  condition = "log.L"
)

Arguments

I

bivariate observations.

s1.int

initial choice of σ1\sigma_1.

s2.int

initial choice of σ2\sigma_2.

a0.int

initial choice of α0\alpha_0.

a1.int

initial choice of α1\alpha_1.

a2.int

initial choice of α2\alpha_2.

tol.est

convergence tolerance, 0.00001 (default).

MxIter.no

maximum number of iterations, 2000 (default).

rate

step size or learning rate for gradient descent, 0.0001 (default).

condition

convergence criterion, "log.L" (default) and "p.logL".

Value

object of class "bbbvpa", a list consisting of

mu1, mu2, sigma1, sigma2, alpha0, alpha1, alpha2, iter.no

estimates of parameters and number of iteration.

data

the supplied data I.

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

Examples


# Read data
data(precipitation)
data <- as.vector(precipitation[,2])
data[is.na(data)]<-0
n <- length(data)
# Construct the three-dimensional data set
data3d <- function(data){
 u <- 12
 Y <- c()
 indx <- indx1 <- indx2 <- indx3 <- 0
 r <- 5
 i <- 2
 while(i < n){
   i <- i + 1
   if(data[i] > u || sum(data[(i-1):i]) > u || sum(data[(i-2):i]) > u){
     if(data[i] > u){imax <- i}
     if(sum(data[(i-1):i]) > u){imax <- i - 3 + which(data[(i-1):i] == max(data[(i-1):i]))[1]}
     if(sum(data[(i-2):i]) > u){imax <- i - 3 + which(data[(i-2):i] == max(data[(i-2):i]))[1]}
     if(max(indx) > (imax-r)){
       cluster <- data[(max(indx)+3):(imax+r)]
     } else{
       cluster <- data[(imax-r):(imax+r)]
     }
     cluster2 <- sapply(c(1:(length(cluster)-1)), function(j) sum(cluster[j:(j+1)]))
     cluster3 <- sapply(c(1:(length(cluster)-2)), function(j) sum(cluster[j:(j+2)]))
     indx1 <- append(indx1,imax-r-1+which(cluster==max(cluster))[1])
     indx2 <- append(indx2,imax-r-1+which(cluster2==max(cluster2)))
     indx3 <- append(indx3,imax-r-1+which(cluster3==max(cluster3)))
     Y <- rbind(Y, c(max(cluster),max(cluster2),max(cluster3)))
     indx <- append(indx,imax)
     i <- i + r
   }
 }
 return(Y)
}
I <- data3d(data)[,c(1,3)]
iniz <- intliz(I)
iniz
est <- estimates(I, iniz[1], iniz[2], iniz[3], iniz[4], iniz[5])
est[-9]
param.boot(I, iniz[1], iniz[2], iniz[3], iniz[4], iniz[5])
conf.intv(est)



[Package bvpa version 1.0.0 Index]