vhar_lm {bvhar} | R Documentation |
Fitting Vector Heterogeneous Autoregressive Model
Description
This function fits VHAR using OLS method.
Usage
vhar_lm(
y,
har = c(5, 22),
include_mean = TRUE,
method = c("nor", "chol", "qr")
)
## S3 method for class 'vharlse'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'vharlse'
knit_print(x, ...)
Arguments
y |
Time series data of which columns indicate the variables |
har |
Numeric vector for weekly and monthly order. By default, |
include_mean |
Add constant term (Default: |
method |
Method to solve linear equation system.
( |
x |
|
digits |
digit option to print |
... |
not used |
Details
For VHAR model
Y_{t} = \Phi^{(d)} Y_{t - 1} + \Phi^{(w)} Y_{t - 1}^{(w)} + \Phi^{(m)} Y_{t - 1}^{(m)} + \epsilon_t
the function gives basic values.
Value
vhar_lm()
returns an object named vharlse
class.
It is a list with the following components:
- coefficients
Coefficient Matrix
- fitted.values
Fitted response values
- residuals
Residuals
- covmat
LS estimate for covariance matrix
- df
Numer of Coefficients: 3m + 1 or 3m
- p
3 (The number of terms.
vharlse
contains this element for usage in other functions.)- week
Order for weekly term
- month
Order for monthly term
- m
Dimension of the data
- obs
Sample size used when training =
totobs
- 22- totobs
Total number of the observation
- call
Matched call
- process
Process: VHAR
- type
include constant term (
"const"
) or not ("none"
)- HARtrans
VHAR linear transformation matrix:
C_{HAR}
- y0
Y_0
- design
X_0
- y
Raw input
It is also a bvharmod
class.
References
Baek, C. and Park, M. (2021). Sparse vector heterogeneous autoregressive modeling for realized volatility. J. Korean Stat. Soc. 50, 495–510.
Bubák, V., Kočenda, E., & Žikeš, F. (2011). Volatility transmission in emerging European foreign exchange markets. Journal of Banking & Finance, 35(11), 2829–2841.
Corsi, F. (2008). A Simple Approximate Long-Memory Model of Realized Volatility. Journal of Financial Econometrics, 7(2), 174–196.
See Also
-
summary.vharlse()
to summarize VHAR model -
predict.vharlse()
to forecast the VHAR process
Examples
# Perform the function using etf_vix dataset
fit <- vhar_lm(y = etf_vix)
class(fit)
str(fit)
# Extract coef, fitted values, and residuals
coef(fit)
head(residuals(fit))
head(fitted(fit))