summary.vharlse {bvhar} | R Documentation |
Summarizing Vector HAR Model
Description
summary
method for vharlse
class.
Usage
## S3 method for class 'vharlse'
summary(object, ...)
## S3 method for class 'summary.vharlse'
print(x, digits = max(3L, getOption("digits") - 3L), signif_code = TRUE, ...)
## S3 method for class 'summary.vharlse'
knit_print(x, ...)
Arguments
object |
|
... |
not used |
x |
|
digits |
digit option to print |
signif_code |
Check significant rows (Default: |
Value
summary.vharlse
class additionally computes the following
names |
Variable names |
totobs |
Total number of the observation |
obs |
Sample size used when training = |
p |
3 |
week |
Order for weekly term |
month |
Order for monthly term |
coefficients |
Coefficient Matrix |
call |
Matched call |
process |
Process: VAR |
covmat |
Covariance matrix of the residuals |
corrmat |
Correlation matrix of the residuals |
roots |
Roots of characteristic polynomials |
is_stable |
Whether the process is stable or not based on |
log_lik |
log-likelihood |
ic |
Information criteria vector |
AIC
- AICBIC
- BICHQ
- HQFPE
- FPE
References
Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.
Corsi, F. (2008). A Simple Approximate Long-Memory Model of Realized Volatility. Journal of Financial Econometrics, 7(2), 174–196.
Baek, C. and Park, M. (2021). Sparse vector heterogeneous autoregressive modeling for realized volatility. J. Korean Stat. Soc. 50, 495–510.