print.summary.bvharsp {bvhar} | R Documentation |
Summarizing BVAR and BVHAR with Shrinkage Priors
Description
Conduct variable selection.
Usage
## S3 method for class 'summary.bvharsp'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'summary.ssvsmod'
knit_print(x, ...)
## S3 method for class 'ssvsmod'
summary(object, method = c("pip", "ci"), threshold = 0.5, level = 0.05, ...)
## S3 method for class 'hsmod'
summary(object, method = c("ci", "pip"), threshold = 0.5, level = 0.05, ...)
Arguments
x |
|
digits |
digit option to print |
... |
not used |
object |
|
method |
Use PIP ( |
threshold |
Threshold for posterior inclusion probability |
level |
Specify alpha of credible interval level 100(1 - alpha) percentage. By default, |
Value
summary.ssvsmod
object
summary.hsmod
object
References
George, E. I., & McCulloch, R. E. (1993). Variable Selection via Gibbs Sampling. Journal of the American Statistical Association, 88(423), 881–889.
George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553–580.
Koop, G., & Korobilis, D. (2009). Bayesian Multivariate Time Series Methods for Empirical Macroeconomics. Foundations and Trends® in Econometrics, 3(4), 267–358.
O’Hara, R. B., & Sillanpää, M. J. (2009). A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis, 4(1), 85–117.