summary.normaliw {bvhar} | R Documentation |
Summarizing Bayesian Multivariate Time Series Model
Description
summary
method for normaliw
class.
Usage
## S3 method for class 'normaliw'
summary(
object,
num_iter = 10000L,
num_burn = floor(num_iter/2),
thinning = 1L,
...
)
## S3 method for class 'summary.normaliw'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'summary.normaliw'
knit_print(x, ...)
Arguments
object |
|
num_iter |
Number to sample MNIW distribution |
num_burn |
Number of burn-in |
thinning |
Thinning every thinning-th iteration |
... |
not used |
x |
|
digits |
digit option to print |
Details
From Minnesota prior, set of coefficient matrices and residual covariance matrix have matrix Normal Inverse-Wishart distribution.
BVAR:
(A, \Sigma_e) \sim MNIW(\hat{A}, \hat{V}^{-1}, \hat\Sigma_e, \alpha_0 + n)
where \hat{V} = X_\ast^T X_\ast
is the posterior precision of MN.
BVHAR:
(\Phi, \Sigma_e) \sim MNIW(\hat\Phi, \hat{V}_H^{-1}, \hat\Sigma_e, \nu + n)
where \hat{V}_H = X_{+}^T X_{+}
is the posterior precision of MN.
Value
summary.normaliw
class has the following components:
- names
Variable names
- totobs
Total number of the observation
- obs
Sample size used when training =
totobs
-p
- p
Lag of VAR
- m
Dimension of the data
- call
Matched call
- spec
Model specification (
bvharspec
)- mn_mean
MN Mean of posterior distribution (MN-IW)
- mn_prec
MN Precision of posterior distribution (MN-IW)
- iw_scale
IW scale of posterior distribution (MN-IW)
- iw_shape
IW df of posterior distribution (MN-IW)
- iter
Number of MCMC iterations
- burn
Number of MCMC burn-in
- thin
MCMC thinning
- alpha_record (BVAR) and phi_record (BVHAR)
MCMC record of coefficients vector
- psi_record
MCMC record of upper cholesky factor
- omega_record
MCMC record of diagonal of cholesky factor
- eta_record
MCMC record of upper part of cholesky factor
- param
MCMC record of every parameter
- coefficients
Posterior mean of coefficients
- covmat
Posterior mean of covariance
References
Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.
BaĆbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25(1).