sim_vhar {bvhar} | R Documentation |
Generate Multivariate Time Series Process Following VAR(p)
Description
This function generates multivariate time series dataset that follows VAR(p).
Usage
sim_vhar(
num_sim,
num_burn,
vhar_coef,
week = 5L,
month = 22L,
sig_error = diag(ncol(vhar_coef)),
init = matrix(0L, nrow = month, ncol = ncol(vhar_coef)),
method = c("eigen", "chol"),
process = c("gaussian", "student"),
t_param = 5
)
Arguments
num_sim |
Number to generated process |
num_burn |
Number of burn-in |
vhar_coef |
VAR coefficient. The format should be the same as the output of |
week |
Weekly order of VHAR. By default, |
month |
Weekly order of VHAR. By default, |
sig_error |
Variance matrix of the error term. By default, |
init |
Initial y1, ..., yp matrix to simulate VAR model. Try |
method |
Method to compute |
process |
Process to generate error term.
|
t_param |
Details
Let M
be the month order, e.g. M = 22
.
Generate
\epsilon_1, \epsilon_n \sim N(0, \Sigma)
For i = 1, ... n,
y_{M + i} = (y_{M + i - 1}^T, \ldots, y_i^T, 1)^T C_{HAR}^T \Phi + \epsilon_i
Then the output is
(y_{M + 1}, \ldots, y_{n + M})^T
For i = 1, ... n,
y_{p + i} = (y_{p + i - 1}^T, \ldots, y_i^T, 1)^T B + \epsilon_i
Then the output is
(y_{p + 1}, \ldots, y_{n + p})^T
Initial values might be set to be zero vector or (I_m - A_1 - \cdots - A_p)^{-1} c
.
Value
T x k matrix
References
Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.