sim_ssvs_var {bvhar} | R Documentation |
Generate SSVS Parameters
Description
This function generates parameters of VAR with SSVS prior.
Usage
sim_ssvs_var(
bayes_spec,
p,
dim_data = NULL,
include_mean = TRUE,
minnesota = FALSE,
mn_prob = 1,
method = c("eigen", "chol")
)
sim_ssvs_vhar(
bayes_spec,
har = c(5, 22),
dim_data = NULL,
include_mean = TRUE,
minnesota = c("no", "short", "longrun"),
mn_prob = 1,
method = c("eigen", "chol")
)
Arguments
bayes_spec |
A SSVS model specification by |
p |
VAR lag |
dim_data |
Specify the dimension of the data if hyperparameters of |
include_mean |
Add constant term (Default: |
minnesota |
Only use off-diagonal terms of each coefficient matrices for restriction.
In |
mn_prob |
Probability for own-lags. |
method |
Method to compute |
har |
Numeric vector for weekly and monthly order. By default, |
Value
List including coefficients.
VAR(p) with SSVS prior
Let \alpha
be the vectorized coefficient of VAR(p).
(\alpha \mid \gamma)
(\gamma_i)
(\eta_j \mid \omega_j)
(\omega_{ij})
(\psi_{ii}^2)
VHAR with SSVS prior
Let \phi
be the vectorized coefficient of VHAR.
(\phi \mid \gamma)
(\gamma_i)
(\eta_j \mid \omega_j)
(\omega_{ij})
(\psi_{ii}^2)
References
George, E. I., & McCulloch, R. E. (1993). Variable Selection via Gibbs Sampling. Journal of the American Statistical Association, 88(423), 881–889.
George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553–580.
Ghosh, S., Khare, K., & Michailidis, G. (2018). High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models. Journal of the American Statistical Association, 114(526).
Koop, G., & Korobilis, D. (2009). Bayesian Multivariate Time Series Methods for Empirical Macroeconomics. Foundations and Trends® in Econometrics, 3(4), 267–358.