sim_mncoef {bvhar} | R Documentation |
Generate Minnesota BVAR Parameters
Description
This function generates parameters of BVAR with Minnesota prior.
Usage
sim_mncoef(p, bayes_spec = set_bvar(), full = TRUE)
Arguments
p |
VAR lag |
bayes_spec |
A BVAR model specification by |
full |
Generate variance matrix from IW (default: |
Details
Implementing dummy observation constructions, Bańbura et al. (2010) sets Normal-IW prior.
A \mid \Sigma_e \sim MN(A_0, \Omega_0, \Sigma_e)
\Sigma_e \sim IW(S_0, \alpha_0)
If full = FALSE
, the result of \Sigma_e
is the same as input (diag(sigma)
).
Value
List with the following component.
- coefficients
BVAR coefficient (MN)
- covmat
BVAR variance (IW or diagonal matrix of
sigma
ofbayes_spec
)
References
Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25(1).
Karlsson, S. (2013). Chapter 15 Forecasting with Bayesian Vector Autoregression. Handbook of Economic Forecasting, 2, 791–897.
Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.
See Also
-
set_bvar()
to specify the hyperparameters of Minnesota prior. -
bvar_adding_dummy for dummy observations definition.
Examples
# Generate (A, Sigma)
# BVAR(p = 2)
# sigma: 1, 1, 1
# lambda: .1
# delta: .1, .1, .1
# epsilon: 1e-04
set.seed(1)
sim_mncoef(
p = 2,
bayes_spec = set_bvar(
sigma = rep(1, 3),
lambda = .1,
delta = rep(.1, 3),
eps = 1e-04
),
full = TRUE
)