sim_iw {bvhar} | R Documentation |
Generate Inverse-Wishart Random Matrix
Description
This function samples one matrix IW matrix.
Usage
sim_iw(mat_scale, shape)
Arguments
mat_scale |
Scale matrix |
shape |
Shape |
Details
Consider \Sigma \sim IW(\Psi, \nu)
.
Upper triangular Bartlett decomposition: k x k matrix
Q = [q_{ij}]
upper triangular with-
q_{ii}^2 \chi_{\nu - i + 1}^2
-
q_{ij} \sim N(0, 1)
with i < j (upper triangular)
-
Lower triangular Cholesky decomposition:
\Psi = L L^T
-
A = L (Q^{-1})^T
-
\Sigma = A A^T \sim IW(\Psi, \nu)
Value
One k x k matrix following IW distribution
[Package bvhar version 2.0.1 Index]